The core-shell metastable intermolecular composites(MIC)have attracted much attention in the past few years due to their unique properties.Here,the preparation of Al-Core heterojunction fibers using PVP as a template ...The core-shell metastable intermolecular composites(MIC)have attracted much attention in the past few years due to their unique properties.Here,the preparation of Al-Core heterojunction fibers using PVP as a template is proposed.The nano-Al was directly added to the precursor solution of cupric acetate monohydrate(CAM)/Polyvinylpyrrolidone(PVP),and the initial Al@CAM/PVP fibers were obtained via electrospinning.The core-shell MIC fibers are then obtained by calcining the initial fibers.The morphology,structure,and composition of Al-core MIC fibers were characterized,that the energetic fibers calcined at 300℃,350℃,and 400℃have a core-shell structure with shell compositions CuxO and PVP,CuxO and Cu O,respectively.The energy release characteristics of Al-core MIC were investigated,and preliminary ignition tests were performed using an ignition temperature measuring instrument and a pulsed laser.The energetic fibers calcined at 300℃exhibited unique properties.The decomposition of PVP in the shell layer promoted exotherm,and a low-temperature exothermic peak was shown at 372-458℃.Lower ignition temperatures and higher flame heights were observed in the combustion tests than calcination at 350℃and 400℃.An unexpected result was that PVP can play a positive role in Al/CuO nanothermites.Simultaneously,this preparation method provided an idea for the integrated preparation of core-shell Al-Core MIC fibers and tuning the properties of MIC.展开更多
文摘The core-shell metastable intermolecular composites(MIC)have attracted much attention in the past few years due to their unique properties.Here,the preparation of Al-Core heterojunction fibers using PVP as a template is proposed.The nano-Al was directly added to the precursor solution of cupric acetate monohydrate(CAM)/Polyvinylpyrrolidone(PVP),and the initial Al@CAM/PVP fibers were obtained via electrospinning.The core-shell MIC fibers are then obtained by calcining the initial fibers.The morphology,structure,and composition of Al-core MIC fibers were characterized,that the energetic fibers calcined at 300℃,350℃,and 400℃have a core-shell structure with shell compositions CuxO and PVP,CuxO and Cu O,respectively.The energy release characteristics of Al-core MIC were investigated,and preliminary ignition tests were performed using an ignition temperature measuring instrument and a pulsed laser.The energetic fibers calcined at 300℃exhibited unique properties.The decomposition of PVP in the shell layer promoted exotherm,and a low-temperature exothermic peak was shown at 372-458℃.Lower ignition temperatures and higher flame heights were observed in the combustion tests than calcination at 350℃and 400℃.An unexpected result was that PVP can play a positive role in Al/CuO nanothermites.Simultaneously,this preparation method provided an idea for the integrated preparation of core-shell Al-Core MIC fibers and tuning the properties of MIC.