The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili...The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves.展开更多
Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr...Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend.展开更多
The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission e...The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ" phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-flee aging (453 K, 6 h). The precipitation process of θ" phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ" phase because the critical nucleation energy is decreased by 19% under stress aging.展开更多
The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouri...The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouring temperature on the microstructure and crystal growth direction of permanent mould casting pure Al were also discussed. The results indicate that the α(Al) crystals in the pure Al do not always keep common columnar grains, but change from the columnar grains to columnar dendrites with developed arms as the pouring temperature rises. The growth direction also varies with the change of pouring temperature. Cu element has similar effects on the microstructures of the PMC and DS casting Al-Cu alloys and the α(Al) crystals gradually change from columnar crystals in turn to columnar dendrites and developed equiaxed dendrites as the Cu content increases. The crystal growth direction in the PMC alloys gradually approaches (110) orientation with increasing Cu content. But the resulting crystals with growth direction of (110) do not belong to feathery grains. There are also no feathery grains to form in all of the DS Al-Cu alloys.展开更多
In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the stand...In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the standard artificial aging treatment for Al-Cu alloy followed heat treatments of solution treatment at 510-530 ℃ for 2 h,quenching in water at 60 ℃ and then artificial aging at 160-190 ℃ for 2-8 h.The effects of solution treatment and artificial aging on the microstructure and mechanical properties of Al-Cu alloy were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),transmission electron microscopy(TEM) and tensile test.The results of solution treatment indicate that the mechanical properties of Al-Cu alloy increase and then decrease with the increase of solution temperature.This is because the residual phases dissolve gradually into the matrix,and the fraction of the precipitation and the size of the re-crystallized grain increased.Compared to the solution temperature,the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu alloy.The artificial aging treatments were conducted at 160-180 ℃ for 2-8 h.The results show that the ultimate tensile strength can be obtained at 180 ℃ for 8 h.Ultimate tensile strength increased with increasing time or temperature.Yield strength was found as the same as the ultimate tensile strength result.展开更多
An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composi...An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composition demixing effect is presented by demixing degree of one element. For binary constituent alloy target, the composition change trend in coating is discussed and the limit of demixing degree for each element is determined. The content of one element with higher average charged state gets larger in coating than in alloy target, at meantime, the content of one element with lower average charged state gets less. For each one of the two constituents, the less the atom percent in alloy target, the larger the difference of its contents between the coating and the target. For triple constituent alloy target, the content change of one element with moderate average charged state is discussed in detail. Its content in coating getting larger or less is determined by the combination result of the contents of the other two elements in alloy target. For a given content of the element with moderate average charged state in triple alloy target, the content deviation level of that element from coating to alloy target will be not larger than that using binary alloy target containing only that element and one of the two others. According to the wanted coating composition, the composition design of alloy target is easily deduced from the formula.展开更多
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition...The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.展开更多
The Al-Cu wheel adopting the new Al alloy was prepared by the liquid-die forging,and the mechanical properties,composition distribution,microstructure and fracture behavior were investigated.The results showed that se...The Al-Cu wheel adopting the new Al alloy was prepared by the liquid-die forging,and the mechanical properties,composition distribution,microstructure and fracture behavior were investigated.The results showed that serious Cu segregation was found in the wheel specimen;the microstructure of the Al-Cu wheel was comprised of the casting microstructure and a small amount of the deformed microstructure;the best heat treatment and water quenching system were found to solution treated at(530±5)℃ for 4 h followed by(535±5)℃ for 24 h and aging treated at(155±5)℃ for 4 h;the fracture morphologies of the samples heated under T 6 and T 5-1 heat treatment showed flat,tough nest,and poor plastic characteristics;the fracture morphologies of the samples heated under T 4 heat treatment exhibited complete resilience,but no residual metallographic characteristic;the sample treated under T 4 protocol had the best elongation;the fracture failure was mainly due to the formation of the CuAl_(2)(θ)phases;and the fracture mechanism of the Al-Cu wheel was intergranular fracture.展开更多
The aim of this work was to evaluate the electrochemical behaviour of hypoeutectic Al-Cu alloys immersed in two different solutions containing sulphate and chloride ions, respectively. The influence of Al2Cu associate...The aim of this work was to evaluate the electrochemical behaviour of hypoeutectic Al-Cu alloys immersed in two different solutions containing sulphate and chloride ions, respectively. The influence of Al2Cu associated to the dendritic arm spacing on the general corrosion resistance of such alloys is analysed. The typical microstructural pattern was examined by using scanning electron microscope. The corrosion tests were performed in both 0.5 M sulphuric acid and 0.5 M NaCl solutions at 25℃ by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. Equivalent circuits by using the ZView software, were also used to provide quantitative support for the discussions. It was found that as the Cu content increased (i.e., increasing the Al2Cu fraction), a higher susceptibility to the corrosion action in the NaCl solution is detected. In contrast, the tests carried out in the H2SO4 solution resulted in similar corrosion,rates for the three different hypoeutectic alloys.展开更多
Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical propert...Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical properties of these wall structures. Due to the higher vacancy binding energy of Cd, Cd-vacancy clusters are formed in the aging process and provide a large number of nucleation locations for θ′ phases. The higher diffusion coefficient of the Cd-vacancy cluster and the lower interfacial energy of θ′ phase lead to the formation of dense θ′ phases in the heat-treated α(Al). According to the strengthening model, after adding Cd in ER2319 welding wires, the yield strength increases by 43 MPa in the building direction of the heat-treated wall structures.展开更多
It is well known that maximal utilization of the returns can be beneficial for cost reduction,preservation of natural resources and protection of the environment,by making them into recycled Al-Cu alloys.In this study...It is well known that maximal utilization of the returns can be beneficial for cost reduction,preservation of natural resources and protection of the environment,by making them into recycled Al-Cu alloys.In this study,the influences of returns on the microstructure and mechanical properties of Al-Cu alloys have been investigated by means of optical microscopy and scanning electron microscopy.The results showed that the returns could be used to produce recycled Al-Cu alloys with fine and uniform microstructure and excellent mechanical properties,including ultimate tensile strength,yield strength and ductility.It was found that the maximum performance of the recycled Al-Cu alloy in their properties could be achievable when the returns content was 20wt.%,which gave 219 MPa,87.16 MPa and 12.15% at as-cast state,and 525 MPa,445.3 MPa and 14.14% after heat treated,in their tensile strengths,yield strengths and elongations,respectively.These values were much higher than those of primary alloy.展开更多
In order to use the cast method to replace forge method in producing the load bearing wheel used in certain heavy duty vehicle, simplified and reduced size load bearing wheels were squeeze cast and studied using Al Cu...In order to use the cast method to replace forge method in producing the load bearing wheel used in certain heavy duty vehicle, simplified and reduced size load bearing wheels were squeeze cast and studied using Al Cu alloy. Tensile properties, hardness, microstructures and morphologies of the squeeze cast wheels were investigated. The results show that the finer microstructure, higher density, strength, toughness and hardness were achieved through the squeeze casting. Ultimate tensile strength of 428 MPa, yield strength of 360 MPa, elongation of 13.1% were achieved for T5 heat treated squeeze cast wheels. The Brinell hardness of squeeze cast wheels is from HB 120 to HB 137.展开更多
The influence of processing variables on the mechanical properties of a nanostructured Al-10 wt.%Cu alloy was investigated.Stress-strain microprobe®system(SSM)and its automated ball indentation®(ABI®)te...The influence of processing variables on the mechanical properties of a nanostructured Al-10 wt.%Cu alloy was investigated.Stress-strain microprobe®system(SSM)and its automated ball indentation®(ABI®)test were used for evaluating the mechanical properties of this alloy.The tests were conducted at 21℃ on the bulk samples that were mechanically alloyed for 6 h at two ball-to-powder mass ratios(BPR)of 30:1 and 90:1.Furthermore,the tests were conducted at 200 and 400℃ on the samples that were processed at BPR of 90:1.Increasing BPR resulted in raising the final indentation load from(316±26)to(631±9)N and reducing the final indentation depth from 111 to 103μm.Regarding the samples that were processed at BPR of 90:1,increasing the test temperature from 21 to 400℃ resulted in decreasing the final load from(631±9)to(125±1)N and increasing the final depth from 103 to(116±1)μm.The sample processed at BPR of 90:1 and tested at 21℃ revealed the highest strength and the least deformability while the sample processed at BPR of 90:1 and tested at 400℃ exhibited the lowest strength and the greatest deformability,as compared to all samples under study.展开更多
The refinement and modification of Al-Cu alloys can result in the change of solidification process,e.g.the nucleation temperature,eutectic arrest,solidification range and cooling rate.Specially,the refinement and modi...The refinement and modification of Al-Cu alloys can result in the change of solidification process,e.g.the nucleation temperature,eutectic arrest,solidification range and cooling rate.Specially,the refinement and modification of Al-Cu alloy can be achieved by addition of rare earth.In this paper,the effect of yttrium on the microstructure and solidification process of Al-Cu alloys was investigated by the method of thermal analysis.Meanwhile,the microstructure of Al-Cu alloy was observed by OM and SEM.The results show that θ(Al2Cu) phases change from mesh structure into fish-bone shape.Analysis indicates that yttrium causes a depression of solid-liquid coexistence zone and the disappearance of recalescence of the eutectic arrest.展开更多
The aim of this paper is to report the results of experiments carried out on Al-Cu alloys with different Cu contents,studying the microstructure evolution during holding in the semi-solid state.The 3-D microstructure ...The aim of this paper is to report the results of experiments carried out on Al-Cu alloys with different Cu contents,studying the microstructure evolution during holding in the semi-solid state.The 3-D microstructure was observed by in situ X-ray microtomography carried out at ESRF Grenoble,France.The variation of the solid-liquid interface area per unit volume during holding was determined.In addition,local observations show that two coarsening mechanisms of the solid particles occur simultaneously:dissolution of small particles to the benefit of larger ones by an Ostwald-type mechanism and the growth of necks between solid particles due to coalescence.These observations confirm that in situ X-ray tomography is a very powerful tool to study the microstructure evolution in the semi-solid state and the influencing mechanisms in real-time.展开更多
In this research, the effects of centrifugal radius and mould rotation speed on microstructure in centrifugal-cast Al-Cu alloy have been investigated. The results show that, with increase of the centrifugal radius or ...In this research, the effects of centrifugal radius and mould rotation speed on microstructure in centrifugal-cast Al-Cu alloy have been investigated. The results show that, with increase of the centrifugal radius or mould rotation speed, the grain size of centrifugal-cast Al-Cu alloy decreases gradually, while the content of white phases containing the Al2Cu precipitated from a-phase, divorced eutectic and regular eutectic microstructure increases, leading to higher Cu macrosegregation. The variation level of microstructure in centrifugal-cast Al-Cu alloy at 600 rpm of mould rotation speed is greater than that at 300 rpm.展开更多
The effects of magnetic field on macro and microstructure of Al-CuAl2 eutectic alloy produced by electromagnetic centrifugal casting have been erperimentally investigated in the present paper. Electromagnetic stirring...The effects of magnetic field on macro and microstructure of Al-CuAl2 eutectic alloy produced by electromagnetic centrifugal casting have been erperimentally investigated in the present paper. Electromagnetic stirring can lead to columnar formation in the cuter region and equiaxed in the inner, and otherwise cause the lamellae coarsened and the microstructure morphology to change from lamella to rod and then to block,if the electromagnetic stirring is intensified.展开更多
Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by f...Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.展开更多
The microstructure of the Al Ti alloy was studied.It was found that Al x Ti( x <5.0wt%) alloy consists of two phases,the solid solution of titanium in aluminum and the intermetallic compound Al 3Ti.The allo...The microstructure of the Al Ti alloy was studied.It was found that Al x Ti( x <5.0wt%) alloy consists of two phases,the solid solution of titanium in aluminum and the intermetallic compound Al 3Ti.The alloy was deformed by rolling and heat treated.The results show that the second phase precipitates are broken and refined in the matrix by large amount of cold work and crystalline grains are refined by annealing after the cold work.Deformation and heat treatment can improve the distribution of second phase of precipitates in the matrix to certain extent.展开更多
The studies were made on the preparation processes of the rare earth metal and alloy target materials and their characterization. In this work the rare earth metals were prepared by electrolysis of the oxide in molten...The studies were made on the preparation processes of the rare earth metal and alloy target materials and their characterization. In this work the rare earth metals were prepared by electrolysis of the oxide in molten salt for Nd metal and metallothermic reduction of the fluorides for Gd, Tb, Dy metals. After vacuum refining and distillation purification these rare earth metals were used for manufacturing the element targets, mosaic targets and as the starting materials of preparing the rare earth-transition metal (RE-TM) alloy targets. The four kinds of Dy-FeCo, NdDy-FeCo, Tb-FeCo and GdTb-FeCo alloy targets with diameter of 100 mm and thickness of 3 mm were prepared using powder metallurgical technique. The oxygen content and microstructure of the prepared RE-TM cast alloys and sintered targets were analyzed. The features and requirements of the RE-TM alloy sputtering target materials were also discussed.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52075400 and 52275368)the 111 Project (No.B17034)+1 种基金the Key Research and Development Program of Hubei Province,China (Nos.2021BAA200 and 2022AAA001)the Independent Innovation Projects of the Hubei Longzhong Laboratory (No.2022ZZ-04)。
文摘The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves.
文摘Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend.
基金Project(2012CB619506)supported by the National Basic Research Program of ChinaProject(51071177)supported by the National Natural Science Foundation of China
文摘The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ" phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-flee aging (453 K, 6 h). The precipitation process of θ" phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ" phase because the critical nucleation energy is decreased by 19% under stress aging.
基金Project(51061010)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of ChinaProject(J201103)supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,China
文摘The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouring temperature on the microstructure and crystal growth direction of permanent mould casting pure Al were also discussed. The results indicate that the α(Al) crystals in the pure Al do not always keep common columnar grains, but change from the columnar grains to columnar dendrites with developed arms as the pouring temperature rises. The growth direction also varies with the change of pouring temperature. Cu element has similar effects on the microstructures of the PMC and DS casting Al-Cu alloys and the α(Al) crystals gradually change from columnar crystals in turn to columnar dendrites and developed equiaxed dendrites as the Cu content increases. The crystal growth direction in the PMC alloys gradually approaches (110) orientation with increasing Cu content. But the resulting crystals with growth direction of (110) do not belong to feathery grains. There are also no feathery grains to form in all of the DS Al-Cu alloys.
文摘In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the standard artificial aging treatment for Al-Cu alloy followed heat treatments of solution treatment at 510-530 ℃ for 2 h,quenching in water at 60 ℃ and then artificial aging at 160-190 ℃ for 2-8 h.The effects of solution treatment and artificial aging on the microstructure and mechanical properties of Al-Cu alloy were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),transmission electron microscopy(TEM) and tensile test.The results of solution treatment indicate that the mechanical properties of Al-Cu alloy increase and then decrease with the increase of solution temperature.This is because the residual phases dissolve gradually into the matrix,and the fraction of the precipitation and the size of the re-crystallized grain increased.Compared to the solution temperature,the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu alloy.The artificial aging treatments were conducted at 160-180 ℃ for 2-8 h.The results show that the ultimate tensile strength can be obtained at 180 ℃ for 8 h.Ultimate tensile strength increased with increasing time or temperature.Yield strength was found as the same as the ultimate tensile strength result.
文摘An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composition demixing effect is presented by demixing degree of one element. For binary constituent alloy target, the composition change trend in coating is discussed and the limit of demixing degree for each element is determined. The content of one element with higher average charged state gets larger in coating than in alloy target, at meantime, the content of one element with lower average charged state gets less. For each one of the two constituents, the less the atom percent in alloy target, the larger the difference of its contents between the coating and the target. For triple constituent alloy target, the content change of one element with moderate average charged state is discussed in detail. Its content in coating getting larger or less is determined by the combination result of the contents of the other two elements in alloy target. For a given content of the element with moderate average charged state in triple alloy target, the content deviation level of that element from coating to alloy target will be not larger than that using binary alloy target containing only that element and one of the two others. According to the wanted coating composition, the composition design of alloy target is easily deduced from the formula.
基金financial supports from the National Natural Science Foundation of China(No.52071207)the China Postdoctoral Science Foundation(Nos.2019TQ0193,2019M661497)+1 种基金the National Key Research and Development Program of China(No.2018YFB1106302)Anhui Provincial Engineering Research Center of Aluminum Matrix Composites,China(No.2017WAMC002)。
文摘The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.
基金Project(2019 YFC 1511400)supported by the National Key Technologies R&D Program of China。
文摘The Al-Cu wheel adopting the new Al alloy was prepared by the liquid-die forging,and the mechanical properties,composition distribution,microstructure and fracture behavior were investigated.The results showed that serious Cu segregation was found in the wheel specimen;the microstructure of the Al-Cu wheel was comprised of the casting microstructure and a small amount of the deformed microstructure;the best heat treatment and water quenching system were found to solution treated at(530±5)℃ for 4 h followed by(535±5)℃ for 24 h and aging treated at(155±5)℃ for 4 h;the fracture morphologies of the samples heated under T 6 and T 5-1 heat treatment showed flat,tough nest,and poor plastic characteristics;the fracture morphologies of the samples heated under T 4 heat treatment exhibited complete resilience,but no residual metallographic characteristic;the sample treated under T 4 protocol had the best elongation;the fracture failure was mainly due to the formation of the CuAl_(2)(θ)phases;and the fracture mechanism of the Al-Cu wheel was intergranular fracture.
文摘The aim of this work was to evaluate the electrochemical behaviour of hypoeutectic Al-Cu alloys immersed in two different solutions containing sulphate and chloride ions, respectively. The influence of Al2Cu associated to the dendritic arm spacing on the general corrosion resistance of such alloys is analysed. The typical microstructural pattern was examined by using scanning electron microscope. The corrosion tests were performed in both 0.5 M sulphuric acid and 0.5 M NaCl solutions at 25℃ by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. Equivalent circuits by using the ZView software, were also used to provide quantitative support for the discussions. It was found that as the Cu content increased (i.e., increasing the Al2Cu fraction), a higher susceptibility to the corrosion action in the NaCl solution is detected. In contrast, the tests carried out in the H2SO4 solution resulted in similar corrosion,rates for the three different hypoeutectic alloys.
基金the financial support from the National Key Technologies Research & Development Program of China (No. 2018YFB1106000)the Youth Talent Project of CAST (No. 2019QNRC001)。
文摘Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical properties of these wall structures. Due to the higher vacancy binding energy of Cd, Cd-vacancy clusters are formed in the aging process and provide a large number of nucleation locations for θ′ phases. The higher diffusion coefficient of the Cd-vacancy cluster and the lower interfacial energy of θ′ phase lead to the formation of dense θ′ phases in the heat-treated α(Al). According to the strengthening model, after adding Cd in ER2319 welding wires, the yield strength increases by 43 MPa in the building direction of the heat-treated wall structures.
文摘It is well known that maximal utilization of the returns can be beneficial for cost reduction,preservation of natural resources and protection of the environment,by making them into recycled Al-Cu alloys.In this study,the influences of returns on the microstructure and mechanical properties of Al-Cu alloys have been investigated by means of optical microscopy and scanning electron microscopy.The results showed that the returns could be used to produce recycled Al-Cu alloys with fine and uniform microstructure and excellent mechanical properties,including ultimate tensile strength,yield strength and ductility.It was found that the maximum performance of the recycled Al-Cu alloy in their properties could be achievable when the returns content was 20wt.%,which gave 219 MPa,87.16 MPa and 12.15% at as-cast state,and 525 MPa,445.3 MPa and 14.14% after heat treated,in their tensile strengths,yield strengths and elongations,respectively.These values were much higher than those of primary alloy.
文摘In order to use the cast method to replace forge method in producing the load bearing wheel used in certain heavy duty vehicle, simplified and reduced size load bearing wheels were squeeze cast and studied using Al Cu alloy. Tensile properties, hardness, microstructures and morphologies of the squeeze cast wheels were investigated. The results show that the finer microstructure, higher density, strength, toughness and hardness were achieved through the squeeze casting. Ultimate tensile strength of 428 MPa, yield strength of 360 MPa, elongation of 13.1% were achieved for T5 heat treated squeeze cast wheels. The Brinell hardness of squeeze cast wheels is from HB 120 to HB 137.
文摘The influence of processing variables on the mechanical properties of a nanostructured Al-10 wt.%Cu alloy was investigated.Stress-strain microprobe®system(SSM)and its automated ball indentation®(ABI®)test were used for evaluating the mechanical properties of this alloy.The tests were conducted at 21℃ on the bulk samples that were mechanically alloyed for 6 h at two ball-to-powder mass ratios(BPR)of 30:1 and 90:1.Furthermore,the tests were conducted at 200 and 400℃ on the samples that were processed at BPR of 90:1.Increasing BPR resulted in raising the final indentation load from(316±26)to(631±9)N and reducing the final indentation depth from 111 to 103μm.Regarding the samples that were processed at BPR of 90:1,increasing the test temperature from 21 to 400℃ resulted in decreasing the final load from(631±9)to(125±1)N and increasing the final depth from 103 to(116±1)μm.The sample processed at BPR of 90:1 and tested at 21℃ revealed the highest strength and the least deformability while the sample processed at BPR of 90:1 and tested at 400℃ exhibited the lowest strength and the greatest deformability,as compared to all samples under study.
文摘The refinement and modification of Al-Cu alloys can result in the change of solidification process,e.g.the nucleation temperature,eutectic arrest,solidification range and cooling rate.Specially,the refinement and modification of Al-Cu alloy can be achieved by addition of rare earth.In this paper,the effect of yttrium on the microstructure and solidification process of Al-Cu alloys was investigated by the method of thermal analysis.Meanwhile,the microstructure of Al-Cu alloy was observed by OM and SEM.The results show that θ(Al2Cu) phases change from mesh structure into fish-bone shape.Analysis indicates that yttrium causes a depression of solid-liquid coexistence zone and the disappearance of recalescence of the eutectic arrest.
基金project ANR-05-BLAN-0286-01 TOMOSOLIDAL supported by the French Agence Nationale de la Recherche,which is gratefully acknowledged
文摘The aim of this paper is to report the results of experiments carried out on Al-Cu alloys with different Cu contents,studying the microstructure evolution during holding in the semi-solid state.The 3-D microstructure was observed by in situ X-ray microtomography carried out at ESRF Grenoble,France.The variation of the solid-liquid interface area per unit volume during holding was determined.In addition,local observations show that two coarsening mechanisms of the solid particles occur simultaneously:dissolution of small particles to the benefit of larger ones by an Ostwald-type mechanism and the growth of necks between solid particles due to coalescence.These observations confirm that in situ X-ray tomography is a very powerful tool to study the microstructure evolution in the semi-solid state and the influencing mechanisms in real-time.
基金supported by the China National Natural Science Foundation (grant no.50434030)
文摘In this research, the effects of centrifugal radius and mould rotation speed on microstructure in centrifugal-cast Al-Cu alloy have been investigated. The results show that, with increase of the centrifugal radius or mould rotation speed, the grain size of centrifugal-cast Al-Cu alloy decreases gradually, while the content of white phases containing the Al2Cu precipitated from a-phase, divorced eutectic and regular eutectic microstructure increases, leading to higher Cu macrosegregation. The variation level of microstructure in centrifugal-cast Al-Cu alloy at 600 rpm of mould rotation speed is greater than that at 300 rpm.
文摘The effects of magnetic field on macro and microstructure of Al-CuAl2 eutectic alloy produced by electromagnetic centrifugal casting have been erperimentally investigated in the present paper. Electromagnetic stirring can lead to columnar formation in the cuter region and equiaxed in the inner, and otherwise cause the lamellae coarsened and the microstructure morphology to change from lamella to rod and then to block,if the electromagnetic stirring is intensified.
基金Project(2021YFB3400903) supported by the National Key R&D Program of ChinaProject(1053320211480) supported by the Science and Technology Innovation Project of Graduate Students of Central South University,China。
文摘Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.
文摘The microstructure of the Al Ti alloy was studied.It was found that Al x Ti( x <5.0wt%) alloy consists of two phases,the solid solution of titanium in aluminum and the intermetallic compound Al 3Ti.The alloy was deformed by rolling and heat treated.The results show that the second phase precipitates are broken and refined in the matrix by large amount of cold work and crystalline grains are refined by annealing after the cold work.Deformation and heat treatment can improve the distribution of second phase of precipitates in the matrix to certain extent.
基金Former the Ministry of Metallurgical Industry of China (BJ95-06-01)
文摘The studies were made on the preparation processes of the rare earth metal and alloy target materials and their characterization. In this work the rare earth metals were prepared by electrolysis of the oxide in molten salt for Nd metal and metallothermic reduction of the fluorides for Gd, Tb, Dy metals. After vacuum refining and distillation purification these rare earth metals were used for manufacturing the element targets, mosaic targets and as the starting materials of preparing the rare earth-transition metal (RE-TM) alloy targets. The four kinds of Dy-FeCo, NdDy-FeCo, Tb-FeCo and GdTb-FeCo alloy targets with diameter of 100 mm and thickness of 3 mm were prepared using powder metallurgical technique. The oxygen content and microstructure of the prepared RE-TM cast alloys and sintered targets were analyzed. The features and requirements of the RE-TM alloy sputtering target materials were also discussed.