期刊文献+
共找到960篇文章
< 1 2 48 >
每页显示 20 50 100
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
1
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties microstructure
下载PDF
Influence of Non-Natural Ageing Temperature on the Microstructural Characteristics and Mechanical Properties of Cast Aluminum 6063 Alloy
2
作者 Oluwole Oladele Ayodele Adedeke +1 位作者 Olajesu Olanrewaju Samuel Olusunle 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期91-99,共9页
This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and ... This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and machined into tensile and impact test samples before carrying out solution heat treatment at 550?C (0.83 T<sub>m</sub>) on two parts of the samples while retaining one part as the control. The two parts were further divided into sets denoted A and B and were aged at 180?C (0.27 T<sub>m</sub>) and 160?C (0.24 T<sub>m</sub>), respectively, for 12 hours. The results showed that sample A has the optimal yield strength and ultimate tensile strength of 192 and 206 MPa, respectively. Likewise, the sample gave the highest impact strength value of about 9.63 J/mm<sup>2</sup>. The observed results were supported by the optical micrograph, which revealed that the sample has evenly dispersed precipitates in its microstructure. This is deemed responsible for the observed increase in strength of the sample. 展开更多
关键词 Aluminum alloy Non-Natural ageing mechanical properties microstructural Features
下载PDF
Effect of Solutionizing and Aging on Microstructure and Mechanical Properties of Warm-rolled 7075 Alloy 被引量:1
3
作者 YANG Xiaorong ZHAO Xiaodong +1 位作者 CHU Zhibing TUO Leifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期408-415,共8页
The effect of solution and aging treatments on microstructure and mechanical properties of warm-rolled 7075 alloy was investigated via optical microscope,electron backscattered diffraction,transmission electron micros... The effect of solution and aging treatments on microstructure and mechanical properties of warm-rolled 7075 alloy was investigated via optical microscope,electron backscattered diffraction,transmission electron microscopy and tensile tests.The 7075 alloy was subjected to solution treatments at 450℃for 1 h(ST1),490℃ for 1 h(ST2)and 1.5 h(ST3).Three aging routes were carried out on samples from ST2:one-step(A1),two-step(A2),and three-step aging(A3).The experimental results show mainly recrystallized equiaxed grains in ST1 and ST3 state but a combination of elongated and equiaxed grains in ST2 condition.Three aged alloys have similar microstructures of sample ST2 while the recrystallization frequency gets decreased after aging.The least recrystallization fraction occurs in A2 state.Three aged 7075 alloys all possess enhanced strength and plasticity.Precipitates characterization reveals the maximum strength is achieved in A2 sample as the matrix precipitates are composed mainly of smallηand manyη′phases.Aging route A2 appears preferable to other two aging conditions for attaining a pretty excellent combination of strength and plasticity. 展开更多
关键词 7075 alloy solutionizing aging PRECIPITATE microstructure mechanical property
下载PDF
Influence of process parameters and aging treatment on the microstructure and mechanical properties of Al Si8Mg3 alloy fabricated by selective laser melting 被引量:4
4
作者 Yaoxiang Geng Hao Tang +6 位作者 Junhua Xu Yu Hou Yuxin Wang Zhen He Zhijie Zhang Hongbo Ju Lihua Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1770-1779,共10页
Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high M... Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM. 展开更多
关键词 AlSi8Mg3 alloy selective laser melting process parameters microstructure aging treatment mechanical properties
下载PDF
Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints 被引量:10
5
作者 Dong Peng Jun Shen +2 位作者 Qin Tang Cui-ping Wu Yan-bing Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第3期259-265,共7页
Aging treatment and various heat input conditions and mechanical properties of TIG welded 606I-T6 alloy joints were adopted to investigate the microstructural evolution by microstructural observations, microhardness t... Aging treatment and various heat input conditions and mechanical properties of TIG welded 606I-T6 alloy joints were adopted to investigate the microstructural evolution by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175℃ for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam. 展开更多
关键词 aluminum alloys tungsten inert gas welding heat input aging mechanical properties microstructure
下载PDF
Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300℃ 被引量:17
6
作者 Y.H.Kang Z.H.Huang +3 位作者 S.C.Wang H.Yan R.S.Chen J.C.Huang 《Journal of Magnesium and Alloys》 SCIE 2020年第1期103-110,共8页
In this work,the microstructural evolution and mechanical properties of a pre-deformed WE43 magnesium alloy when aged at 250 and 300℃ were further investigated.It is found that the abundant deformation twins introduc... In this work,the microstructural evolution and mechanical properties of a pre-deformed WE43 magnesium alloy when aged at 250 and 300℃ were further investigated.It is found that the abundant deformation twins introduced by pre-deformation were maintained within the alloy during the aging treatment.Second particles formed at the twin boundaries and coarsened with aging time,especially at 300℃.When peak-aged at 250℃,the fine metastable β'''and β' precipitates formed in the un-deformed alloy have been transformed into relatively large β1 and β precipitates by the pre-deformation.While peak-aged at 300℃,the pre-deformation obviously refined the β precipitates.Mechanical properties indicate that pre-deformation can increase the yield strength by 19MPa and 54MPa for the peak-aged alloy at 250℃ and 300℃,respectively,and will not obviously deteriorate the tensile elongations. 展开更多
关键词 WE43 magnesium alloy PRE-DEFORMATION aging microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of AZ91-Ca magnesium alloy cast by different processes 被引量:2
7
作者 xiao-yang chen yang zhang +1 位作者 ya-lin lu xiao-ping li 《China Foundry》 SCIE 2018年第4期263-269,共7页
The microstructure and mechanical properties of magnesium(Mg) alloys are significantly influenced by the casting process. In this paper, a comparative study on microstructure and mechanical properties at ambient and e... The microstructure and mechanical properties of magnesium(Mg) alloys are significantly influenced by the casting process. In this paper, a comparative study on microstructure and mechanical properties at ambient and elevated temperatures of AZ91-2 wt.% Ca(AZX912) Mg alloy samples prepared by gravity casting(GC), squeeze casting(SC) and rheo-squeeze casting(RSC), respectively, was carried out. The results show that α-Mg grains in SC and RSC samples are significantly refined compared to the GC sample. The average secondary dendritic arm spacing of AZX912 alloy samples decreases in the order of GC, SC and RSC. As testing temperature increases from 25 °C to 200 °C, strength of AZX912 alloy samples is reduced, while their elongation is increased continuously. Compared to GC and SC processes, RSC process can improve the mechanical properties of AZX912 alloy at both ambient and elevated temperatures. The enhancement of mechanical properties of RSC sample over GC and SC samples mainly results from grain refinement in the as-cast microstructure of AZX912 alloy. 展开更多
关键词 magnesium alloys casting process microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of Al-Zn-Cu-Mg-Sc-Zr alloy after retrogression and re-aging treatments 被引量:8
8
作者 李文斌 潘清林 +2 位作者 肖艳苹 何运斌 刘晓艳 《Journal of Central South University》 SCIE EI CAS 2011年第2期279-284,共6页
The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstructure and mechanical properties on ... The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstructure and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η′(MgZn2) and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120 °C, 24 h + 180 °C, 30 min + 120 °C, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition. 展开更多
关键词 时效处理 锆合金 机械性能 透射电子显微镜 电导率测量 RRA处理 力学性能
下载PDF
Influence of aging modes on microstructure and mechanical properties of AZ80 magnesium alloy 被引量:4
9
作者 ZHANG Ju-mei JIANG Bai-ling +3 位作者 WANG Zhi-hu YUAN Sen NAN Hong-qiang LUO Hong-bin 《China Foundry》 SCIE CAS 2007年第4期296-299,共4页
The microstructure and mechanical properties of AZ80 magnesium alloy after solid solution and aging treatments were studied by using optical microscope(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM)as we... The microstructure and mechanical properties of AZ80 magnesium alloy after solid solution and aging treatments were studied by using optical microscope(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM)as well as tensile testing.The results indicated that β-Mg17Al12 phase was getting to distribute discontinuously along the grain boundary after treated at 395℃ ageing for 12 h followed by water-cooling,but it did not dissolve into α-Mg completely.The residual β-Mg17Al12 phase distributed along the grain boundary and had block-like or island shapes.The size of α-Mg was getting to be coarsening but not significantly.The β-Mg17Al12 precipitates appeared in discontinuous and continuous patterns from supersaturated α-Mg solid solution after aged at 200℃.The precipitation patterns were associated with the aging time essentially.The tensile strength and elongation of the alloy increased significantly but the hardness and yield strength decreased after solid solution treatment.However,with the prolonging of aging time,the hardness and strength of alloy increased while the ductility decreased. 展开更多
关键词 镁合金 固溶体 时效处理 机械设备
下载PDF
Effect of RE elements on the microstructural and mechanical properties of as-cast and age hardening processed Mg-4Al-2Sn alloy 被引量:6
10
作者 Amir Mahyar Majd Mohammad Farzinfar +1 位作者 Matin Pashakhanlou Mohammad Javad Nayyeri 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第3期309-317,共9页
In the present article,the effect of Rare Earth elements on the microstructural development and mechanical properties of as cast and age treated Mg-4Al-2Sn(AT42)alloy is studied.Investigation has been conducted by opt... In the present article,the effect of Rare Earth elements on the microstructural development and mechanical properties of as cast and age treated Mg-4Al-2Sn(AT42)alloy is studied.Investigation has been conducted by optical and scanning electron microscope,XRD and tensile tests.Analysis of the data showed that alloy’s dendrites turn into larger dendritic structure with sharp and narrow arms from equiaxed rosette type by addition of RE elements.In contrast to the base alloy,aging treatment shows a positive effect on the mechanical properties(yield strength,tensile strength and elongation)of AT42+1RE alloy mainly because of retention of the thermally stable RE containing intermetallics as strong barriers to grain growth.Also,increase of solute aluminum due to the decomposition of Mg 17 Al 12 along with saturated RE elements led to formation of blocky shape Al 2 RE in the microstructure during aging which enhanced the mechanical properties.It was found that the best result(yield of 70 MPa,tensile strength of 168 MPa and elongation of 14%)could be achieved by aging the AT42+1RE alloy at 443 K(170℃)for 8 h.However,mechanical properties of AT42+1RE alloy starts to decrease after exceeding its optimum aging conditions due to the coarsening of intermetallics. 展开更多
关键词 Magnesium alloys aging Rare earth elements mechanical properties microstructure
下载PDF
Microstructure refinement,mechanical and biocorrosion properties of Mg–Zn–Ca–Mn alloy improved by a new severe plastic deformation process 被引量:5
11
作者 M.Kavyani G.R.Ebrahimi +1 位作者 H.R.Ezatpour M.Jahazi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1640-1662,共23页
In this study,the microstructural evolution,mechanical properties and biocorrosion performance of a Mg–Zn–Ca–Mn alloy were investigated under different conditions of heat treatment,extrusion,one pass and two passes... In this study,the microstructural evolution,mechanical properties and biocorrosion performance of a Mg–Zn–Ca–Mn alloy were investigated under different conditions of heat treatment,extrusion,one pass and two passes of half equal channel angular pressing(HECAP)process.The results showed significant grain refinement of the homogenized alloy after two passes of HECAP process from 345μm to 2μm.Field emission scanning electron microscopy(FESEM)revealed the presence of finer Mg_(6)Zn_(3)Ca_(2)phase as well asα-Mn phase after HECAP process.The results also showed that mechanical characteristics such as yield strength,ultimate tensile strength and elongation of the HECAPed samples improved by~208%,~144%and~100%compared to the homogenized one,respectively.Crystallographic texture analysis indicated that most of the grains at the surface were reoriented parallel to the(0001)basal plane after HECAP process.Electrochemical corrosion tests and immersion results indicated that the sample with two passes of HEACP had the highest biocorrosion resistance confirming that the basal planes had the lowest corrosion rate compared to the non-basal ones.The mechanical behavior and bio-corrosion evaluation demonstrated that the HECAPed Mg–Zn–Ca–Mn alloy has great potential for biomedical applications and a mechanism was proposed to explain the interrelations between the thermomechanical processing and bio-corrosion behavior. 展开更多
关键词 Mg–Zn–Ca–Mn alloy HECAP process microstructure mechanical properties Bio-corrosion performance
下载PDF
Investigation on microstructures and mechanical properties of Mg-6Zn-0.5Ce-xMn(x=0 and 1)wrought magnesium alloys 被引量:4
12
作者 Caihong Hou Hongshuai Cao +5 位作者 Fugang Qi Qing Wang Lianhui Li Nie Zhao Dingfei Zhang Xiaoping Ouyang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期993-1003,共11页
The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyze... The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening. 展开更多
关键词 Mg–6Zn–0.5Ce alloy microstructure evolution mechanical property Mn element aging precipitation
下载PDF
Effect of hot isostatic pressing processing parameters on microstructure and properties of Ti60 high temperature titanium alloy
13
作者 Tian-yu Liu Kun Shi +6 位作者 Jun Zhao Shi-bing Liu You-wei Zhang Hong-yu Liu Tian-yi Liu Xiao-ming Chen Xin-min Mei 《China Foundry》 SCIE CAS CSCD 2023年第1期49-56,共8页
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ... Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity. 展开更多
关键词 hot isostatic pressing processing parameters Ti60 titanium alloy DEFECTS composition uniformity microstructure mechanical properties
下载PDF
Effects of Ce and Ti on the microstructures and mechanical properties of an Al-Cu-Mg-Ag alloy 被引量:15
14
作者 SONG Min CHEN Kanghua HUANG Lanping 《Rare Metals》 SCIE EI CAS CSCD 2007年第1期28-32,共5页
The effects of Ce and Ti additions on the microstructures and mechanical properties of an Al-Cu-Mg-Ag alloy have been studied, It has been shown that either Ce or Ti can decrease the as-cast grain size of the Al-Cu-Mg... The effects of Ce and Ti additions on the microstructures and mechanical properties of an Al-Cu-Mg-Ag alloy have been studied, It has been shown that either Ce or Ti can decrease the as-cast grain size of the Al-Cu-Mg-Ag alloy, increase the nucleation ratio for Ω phase as heterogeneous nucleation centers, inhibit the growth of Ω phase during aging, and thus increase the volume fraction and decrease the spacing of Ω phase. These microstructures increase the yield strength and tensile strength. However, if both Ce and Ti are added to the alloy, they form (Ce,Ti)-contained compounds and increase the grain size during casting, but have no effects on the nucleation and the growth of Ω phase during aging. The alloy containing both Ce and Ti has a relatively lower Vicks hardness and strength compared to the alloy containing either Ce or Ti. 展开更多
关键词 Al-Cu-Mg-ag alloy microstructureS mechanical properties CE TI Ω phase
下载PDF
Evolution of microstructure and mechanical properties of A356 aluminium alloy processed by hot spinning process 被引量:8
15
作者 Xiao-yan Wu Hua-rui Zhang +2 位作者 Huan-liang Chen Li-na Jia Hu Zhang 《China Foundry》 SCIE 2017年第2期138-144,共7页
The evolution of microstructure and mechanical properties of A356 aluminum alloy subjected to hot spinning process has been investigated. The results indicated that the deformation process homogenized microstructure a... The evolution of microstructure and mechanical properties of A356 aluminum alloy subjected to hot spinning process has been investigated. The results indicated that the deformation process homogenized microstructure and improved mechanical properties of the A356 aluminum alloy. During the hot spinning process, eutectic Si particles and Fe-rich phases were fragmented, and porosities were eliminated. In addition, recrystallization of Al matrix and precipitation of Al Si Ti phases occurred. The mechanical property testing results indicated that there was a significant increase of ductility and a decrease of average microhardness in deformed alloy over die-cast alloy. This is attributed to uniform distribution of finer spherical eutectic Si particles, the elimination of casting defects and to the recrystallized finer grain structure. 展开更多
关键词 热旋转过程 A356 铝合金 微观结构 机械性质 TG146.21 A
下载PDF
Effect of cerium on microstructure,wetting and mechanical properties of Ag-Cu-Ti filler alloy 被引量:5
16
作者 杨长勇 徐九华 +2 位作者 丁文锋 陈珍珍 傅玉灿 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期1051-1055,共5页
Effect of cerium on microstructure,mechanical and wetting properties of Ag-Cu-Ti filler alloy was researched with optical microscopy,scanning electron microscopy and X-ray diffraction.The results indicated that additi... Effect of cerium on microstructure,mechanical and wetting properties of Ag-Cu-Ti filler alloy was researched with optical microscopy,scanning electron microscopy and X-ray diffraction.The results indicated that addition of cerium accelerated alloying of the filler alloy,enlarged supercooled region,caused microstructural refinement and dispersed distribution of intermetallic compounds.It resulted in the increase in microhardness and shear strength of Ag-Cu-Ti filler alloy.At the same time,cerium improved wet... 展开更多
关键词 CERIUM microstructure ag-Cu-Ti alloy mechanical property rare earths
下载PDF
Effects of solution treatment on mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy 被引量:4
17
作者 YU Cheng YIN Deng-feng +1 位作者 ZHENG Feng YU Xin-xiang 《Journal of Central South University》 SCIE EI CAS 2013年第8期2083-2089,共7页
Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, d... Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, differential scanning calorimetric (DSC), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transition electron microscopy (TEM), respectively. The results show that both tensile strength and hardness increase first and then decrease with temperature at constant holding time of 30 min with maximum strength and hardness appearing at 520 ℃. Tensile strength, hardness and elongation of samples treated at 520 ℃ for 30 min are 566 MPa (σb ), 512 MPa (σ0.2 ), HB 148 and 8.23% (δ), respectively. There are certain amount of fine T1 (Al2 CuLi) phase dispersing among Al substrates according to TEM images. This may result in mixed fracture morphology with trans-granular and inter-granular delamination cracks observed in SEM images. 展开更多
关键词 显微组织 机械性能 银合金 固溶处理 扫描电子显微镜 SEM图像 差示扫描量热法 硬度测量
下载PDF
Effects of Ag addition on mechanical properties and microstructures of Al-8Cu-0.5Mg alloy 被引量:4
18
作者 宋旼 陈康华 黄兰萍 《中国有色金属学会会刊:英文版》 CSCD 2006年第4期766-771,共6页
The mechanical properties and microstructures of Al-8Cu-0.5Mg alloy with and without Ag addition were studied at both room- and elevated-temperatures. The results show that the alloy with Ag is strengthened by a homog... The mechanical properties and microstructures of Al-8Cu-0.5Mg alloy with and without Ag addition were studied at both room- and elevated-temperatures. The results show that the alloy with Ag is strengthened by a homogeneous distribution of coexistent θ′ and ? precipitates on the matrix (001) and (111) planes, respectively, whereas the alloy without Ag by θ′ precipitates only. The small size and high volume fraction of θ′ and ? precipitates in the Ag-containing alloy improve the tensile strength and yield strength, especially those at the elevated temperatures. However, it is also responsible for the decrease in elongation, compared with the alloy without Ag, which is due to the microcracks initiated from the inherent incompatibility between the particles and the Al matrix during deformation. 展开更多
关键词 AL-CU-MG 铝合金 机械性能 显微结构
下载PDF
Effects of Ag on microstructure and mechanical properties of 2519 aluminum alloy 被引量:1
19
作者 李慧中 张新明 +1 位作者 陈明安 周卓平 《Journal of Central South University of Technology》 EI 2006年第2期130-134,共5页
The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microsco... The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microscope. The results show that the addition of 0.3% (mass fraction) Ag accelerates 2519 aluminum alloy’s age-hardening, increases its peak hardness and reduces 4h of peak aged time at 180℃. The addition of 0.3%(mass fraction) Ag increses the tensile strength at room temperature and elevated temperature. This increment at room temperature and 200℃ is 24MPa and 78MPa, respectively. In contrast, the elongation of 2519 aluminum alloy is decreased with Ag addition. The increase of tensile strength of 2519 aluminum alloy with Ag addition is attributed to the high volume fraction of Ω phase. 展开更多
关键词 铝合金 时效 机械性能 显微结构
下载PDF
Effect of Heat-treatment on the Microstructures and Mechanical Properties of Mg-10Zn-5Al-0.1Sb-xCu Magnesium Alloy
20
作者 游志勇 ZHANG Yuhua +2 位作者 CHENG Weili ZHANG Jinshan WEI Yinghui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期834-839,共6页
The effects of the solution and aging treatment on microstructures and mechanical properties of the Mg-10Zn-5A1-0.1Sb-XCu cast magnesium alloys were investigated by brinell hardness measurement, scanning electron micr... The effects of the solution and aging treatment on microstructures and mechanical properties of the Mg-10Zn-5A1-0.1Sb-XCu cast magnesium alloys were investigated by brinell hardness measurement, scanning electron microscopy (SEM), energy spectrum analyzing apparatus and X-ray diffraction (XRD). The experimental results show that the strip-like t-Mg32 (A1, Zn)49 phase is shown at the grain boundaries and Mg2Cu phase become smaller, even granular after solution treatment at 350 ~C for 24 h. By ageing treatment at 180 ~C, the ternary strengthening phase (r phase) precipitates gradually at or around grain boundary. With increasing aging time, the micro-hardness improves obviously and up to the maximum (105.9 HV) at aging time of 36 h. In addition, the tensile-strengths at room temperature and at an elevated temperature respectively reach 228 MPa and 176 MPa, which is increased by 20% and 10%, respectively. 展开更多
关键词 solution and aging magnesium alloy microstructure mechanical property
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部