A thermodynamic assessment of the Al-Fe-Mn-Si quaternary system and its subsystems was performed by the Calphad method. First, the Al-Fe-Si ternary description was deeply revised by considering the most recent experim...A thermodynamic assessment of the Al-Fe-Mn-Si quaternary system and its subsystems was performed by the Calphad method. First, the Al-Fe-Si ternary description was deeply revised by considering the most recent experimental investigations and employing new models to ternary compounds. Significant improvements were made on the calculated liquidus projection over the entire compositional range, especially in the Al-rich corner. The Al-Mn-Si system was refined in the Al-rich region by adopting new models for the two ternary compounds, a-AlMnSi and β-AlMnSi. The extended solubility of the a-AlMnSi phase into the Al-Fe-Mn-Si quaternary system was modeled to reproduce the phase equilibria in the Al-rich region. Special cares were taken in order to prevent a-AlMnSi from becoming stable in the Al-Fe-Si ternary system. The obtained thermodynamic descriptions were then implemented into the TCAL database, and extensively validated with phase equilibrium calculations and solidification simulations against experimental data/information from commercial aluminum alloys. The updated TCAL database can reliably predict the phase formation in Al-Fe-Si- and Al-Fe-Mn-Si-based aluminum alloys.展开更多
In this study, the Al-Fe-Mn ternary system is reassessed by the CALPHAD method. Three new ternary intermetallic compounds are initially described and a rea- sonable and self-consistent set of thermodynamic parameters ...In this study, the Al-Fe-Mn ternary system is reassessed by the CALPHAD method. Three new ternary intermetallic compounds are initially described and a rea- sonable and self-consistent set of thermodynamic parameters are established to describe this system. The 973 K, 1 073K, 1 173K, 1 273K, 1 373K, and 1 473K isothermal sections and the 1 073 K, 1 013 K, 968 K and 913 K isothermal sections at the AI corner as well as the liquidus projection at the Al corner are calculated. It is shown that the calculated results are in good agreement with almost all of the experimental results previously reported.展开更多
文摘A thermodynamic assessment of the Al-Fe-Mn-Si quaternary system and its subsystems was performed by the Calphad method. First, the Al-Fe-Si ternary description was deeply revised by considering the most recent experimental investigations and employing new models to ternary compounds. Significant improvements were made on the calculated liquidus projection over the entire compositional range, especially in the Al-rich corner. The Al-Mn-Si system was refined in the Al-rich region by adopting new models for the two ternary compounds, a-AlMnSi and β-AlMnSi. The extended solubility of the a-AlMnSi phase into the Al-Fe-Mn-Si quaternary system was modeled to reproduce the phase equilibria in the Al-rich region. Special cares were taken in order to prevent a-AlMnSi from becoming stable in the Al-Fe-Si ternary system. The obtained thermodynamic descriptions were then implemented into the TCAL database, and extensively validated with phase equilibrium calculations and solidification simulations against experimental data/information from commercial aluminum alloys. The updated TCAL database can reliably predict the phase formation in Al-Fe-Si- and Al-Fe-Mn-Si-based aluminum alloys.
文摘In this study, the Al-Fe-Mn ternary system is reassessed by the CALPHAD method. Three new ternary intermetallic compounds are initially described and a rea- sonable and self-consistent set of thermodynamic parameters are established to describe this system. The 973 K, 1 073K, 1 173K, 1 273K, 1 373K, and 1 473K isothermal sections and the 1 073 K, 1 013 K, 968 K and 913 K isothermal sections at the AI corner as well as the liquidus projection at the Al corner are calculated. It is shown that the calculated results are in good agreement with almost all of the experimental results previously reported.
基金financially supported by the Fundamental Research Funds for the Central Universities,China(No.2020CDJDPT001)the Chongqing Natural Science Foundation,China(No.cstc2021jcyj-msxm X0699)。