Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mi...Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mini watermelon in spring greenhouse can effectively solve the problem of continuous cropping in facility wa- termelon, and they are conducive to green, safe and efficient development of water- melon industry for fixed nutrient solution formula, automatic water and fertilizer irri- gation, stable product quality and facilitating large-scale and standardized production.展开更多
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that...Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.展开更多
Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing exp...Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.展开更多
[Objective]The aim was to discuss elimination mechanism and equilibrium model about complete linkage gene of panmixis based on fitness.[Method]A mathematical model that gsgenerational evalution of frequency of panmixi...[Objective]The aim was to discuss elimination mechanism and equilibrium model about complete linkage gene of panmixis based on fitness.[Method]A mathematical model that gsgenerational evalution of frequency of panmixis two pairs of complete linkage gene under difference fitness was built by using difference equations to study elimination mechanism and genetic equilibrium state of panncticcoinplete linkage gene.[Result]The panmixis is different from Hardy-Weinberg Equilibrium which reached the equilibrium just by one generation.A method that by using linear equation to calculate the frequency of four gametes and the fitnessed of panmixis was established after detormining is the fitness of 10 genotypes the necessary and sufficient condition of the panmixis to reach balance.[Conclusion]The method is valuable for reference on linkage disequilibrium and hitchhiking effect study.展开更多
Taking experimental path on disordering AuCuI(AAuCu8A4)composed of A Au8 and ACu4 stem alloy genes as an example, three discoveries and a method were presented. The ability of Au Cu I(AAu Cu8 A4)to keep structure ...Taking experimental path on disordering AuCuI(AAuCu8A4)composed of A Au8 and ACu4 stem alloy genes as an example, three discoveries and a method were presented. The ability of Au Cu I(AAu Cu8 A4)to keep structure stabilization against changing temperature is attributed to the fact that the AAu8 and ACu4 potential well depths greatly surpass their vibration energies, which leads to the subequilibrium of experimental path. A new atom movement mechanism of AuCuI(AAuACu84)to change structure for suiting variation in temperature is the resonance activating-synchro alternating of alloy genes, which leads to heterogeneous and successive subequilibrium transitions. There exists jumping order degree, which leads to the existence of jumping Tj-temperature and an unexpected so-called "retro-effect" about jumping temperature retrograde shift to lower temperatures upon the increasing heating rate. A set of subequilibrium holographic network path charts were obtained by the experimental mixed enthalpy path method.展开更多
[Objective] This study aimed to investigate the effects of substrate en- zymes activities on nursing of watermelon seedlings. [Method] The composted mushroom residue was mixed with garden soil according to a certain p...[Objective] This study aimed to investigate the effects of substrate en- zymes activities on nursing of watermelon seedlings. [Method] The composted mushroom residue was mixed with garden soil according to a certain proportion to prepare nursing substrate for watermelon seedlings. During the nursing, the activity variation in alkaline phosphatase, acid phosphatase, neutral phosphatase and urease was investigated. In addition, the correlations between pH value, total nitrogen con- tent, total phosphorus content and organic matter content in substrate and enzyme activity were studied. At different young seedling stages, the rhizospheric substrates with different formulas were sampled for determination of enzymes activities. [Result] The enzyme activity differed significantly among different substrates. The correlation analysis results showed that the higher the organic matter content and total nitrogen content in substrate are, the higher the urease activity is; the phosphatase activity was significantly related to the organic matter content, total nitrogen content and to- tal phosphorus content in substrate; the pH value of substrate was significantly relat- ed to rhizospheric alkaline phosphatase activity; the shoot dry weight was positively related to urease activity; there was a significant correlation between phosphatase activity and root dry weight. [Conclusion] Through determining enzymes activities in the rhizospheric substrate for nursing watermelon seedlings, the optimum substrate M3 was screened out. The activities of rhizospheric urease, alkaline phosphatase, acid phosphatase and neutral phosphatase in the substrate M3 were all higher than those in the substrate fertilized with manure.展开更多
As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experime...As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.展开更多
It is of great significance to study gas hydrate because of following reasons. (1) Most organic carbon in the earth reserves in the form of natural gas hydrate, which is considered as a potential energy resource for...It is of great significance to study gas hydrate because of following reasons. (1) Most organic carbon in the earth reserves in the form of natural gas hydrate, which is considered as a potential energy resource for the survival of human being in the future. (2) A series of novel technologies are based on gas hydrate. (3) Gas hydrate may lead to many hazards including plugging of oil/gas pipelines, accelerating global warming up, etc. In this paper, the latest progresses in exploration and exploitation of natural gas hydrate, the development of hydrate-based technologies including gas separation, gas storage, CO2 sequestration via forming hydrate, as well as the prevention of hydrate hazards are reviewed. Additionally, the progresses in the fundamental study of gas hydrate, including the thermodynamics and kinetics are also reviewed. A prospect to the future of gas hydrate research and application is given.展开更多
RNA helicases of the DEAD-box and related families are involved in various cellular processes including DNA replication, DNA repair, and RNA processing. However, the function of DEAD-box proteins in aquaculture specie...RNA helicases of the DEAD-box and related families are involved in various cellular processes including DNA replication, DNA repair, and RNA processing. However, the function of DEAD-box proteins in aquaculture species is poorly understood at molecular level. We obtained the full-length cDNA sequences of two genes encoding helicase-related proteins, Fc-vasa and Fc-PL10a, from the testes of Chinese shrimp, Fenneropenaeus chinensis. The two predicted amino acid sequences contain all the conserved motifs characterized by the DEAD-box family and several RGG repeats in the N-terminal regions. Homology and phylogenetic analyses indicate that they belong to the vasa and PLIO subfamilies. The three-dimensional structures of the two proteins were predicted with a homology modeling approach. Both core proteins consist of two tandem RecA-like domains similar to those of the DEAD-box RNA helicase. Using reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR we found that Fc-vasa was expressed specifically in the adult gonads. Transcription decreased in the ovary but increased in the testis during gonadal development. Fc-PL10a expression was widely distributed in the tissues we examined. Using in situ hybridization, we demonstrated that the Fc-vasa transcript is localized to the cytoplasm of the spermatogonia and oocytes. Thus, our results suggest that Fc-wasa plays an important role in germ-line development, and has utility as a germ cell lineage marker which will help to generate new insight into the origin and differentiation of germ cells as well as the regulation of reproduction in F. chinensis.展开更多
文摘Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mini watermelon in spring greenhouse can effectively solve the problem of continuous cropping in facility wa- termelon, and they are conducive to green, safe and efficient development of water- melon industry for fixed nutrient solution formula, automatic water and fertilizer irri- gation, stable product quality and facilitating large-scale and standardized production.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.
基金Supported by Scientific Research Grant of the Education Department of Guangxi Zhuang Autonomous Region(200807MS065)Elite Support Fund for Universities in Guangxi Zhuang Autonomous Region~~
文摘[Objective]The aim was to discuss elimination mechanism and equilibrium model about complete linkage gene of panmixis based on fitness.[Method]A mathematical model that gsgenerational evalution of frequency of panmixis two pairs of complete linkage gene under difference fitness was built by using difference equations to study elimination mechanism and genetic equilibrium state of panncticcoinplete linkage gene.[Result]The panmixis is different from Hardy-Weinberg Equilibrium which reached the equilibrium just by one generation.A method that by using linear equation to calculate the frequency of four gametes and the fitnessed of panmixis was established after detormining is the fitness of 10 genotypes the necessary and sufficient condition of the panmixis to reach balance.[Conclusion]The method is valuable for reference on linkage disequilibrium and hitchhiking effect study.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking experimental path on disordering AuCuI(AAuCu8A4)composed of A Au8 and ACu4 stem alloy genes as an example, three discoveries and a method were presented. The ability of Au Cu I(AAu Cu8 A4)to keep structure stabilization against changing temperature is attributed to the fact that the AAu8 and ACu4 potential well depths greatly surpass their vibration energies, which leads to the subequilibrium of experimental path. A new atom movement mechanism of AuCuI(AAuACu84)to change structure for suiting variation in temperature is the resonance activating-synchro alternating of alloy genes, which leads to heterogeneous and successive subequilibrium transitions. There exists jumping order degree, which leads to the existence of jumping Tj-temperature and an unexpected so-called "retro-effect" about jumping temperature retrograde shift to lower temperatures upon the increasing heating rate. A set of subequilibrium holographic network path charts were obtained by the experimental mixed enthalpy path method.
基金Supported by Support Project for Young Backbone Teachers of Harbin Normal University(XRQG09)Program for Innovative Research Team Building in Edible Fungi of Beijing City(PXM 2013-036204-00153)~~
文摘[Objective] This study aimed to investigate the effects of substrate en- zymes activities on nursing of watermelon seedlings. [Method] The composted mushroom residue was mixed with garden soil according to a certain proportion to prepare nursing substrate for watermelon seedlings. During the nursing, the activity variation in alkaline phosphatase, acid phosphatase, neutral phosphatase and urease was investigated. In addition, the correlations between pH value, total nitrogen con- tent, total phosphorus content and organic matter content in substrate and enzyme activity were studied. At different young seedling stages, the rhizospheric substrates with different formulas were sampled for determination of enzymes activities. [Result] The enzyme activity differed significantly among different substrates. The correlation analysis results showed that the higher the organic matter content and total nitrogen content in substrate are, the higher the urease activity is; the phosphatase activity was significantly related to the organic matter content, total nitrogen content and to- tal phosphorus content in substrate; the pH value of substrate was significantly relat- ed to rhizospheric alkaline phosphatase activity; the shoot dry weight was positively related to urease activity; there was a significant correlation between phosphatase activity and root dry weight. [Conclusion] Through determining enzymes activities in the rhizospheric substrate for nursing watermelon seedlings, the optimum substrate M3 was screened out. The activities of rhizospheric urease, alkaline phosphatase, acid phosphatase and neutral phosphatase in the substrate M3 were all higher than those in the substrate fertilized with manure.
基金Supported by the National Technology Support Program of China(2006BAE02B02)the National Basic Research Program of China (2005CB221205)
文摘As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.
基金Supported by the National Natural Science Foundation of China (20925623 21076225) the National High Technology Research and Development Program of China (2007AA09Z311)+1 种基金 the National Science & Technology Major Project (2008ZX05026-004-03) the National Basic Research Program of China (2009CB219504)
文摘It is of great significance to study gas hydrate because of following reasons. (1) Most organic carbon in the earth reserves in the form of natural gas hydrate, which is considered as a potential energy resource for the survival of human being in the future. (2) A series of novel technologies are based on gas hydrate. (3) Gas hydrate may lead to many hazards including plugging of oil/gas pipelines, accelerating global warming up, etc. In this paper, the latest progresses in exploration and exploitation of natural gas hydrate, the development of hydrate-based technologies including gas separation, gas storage, CO2 sequestration via forming hydrate, as well as the prevention of hydrate hazards are reviewed. Additionally, the progresses in the fundamental study of gas hydrate, including the thermodynamics and kinetics are also reviewed. A prospect to the future of gas hydrate research and application is given.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China (No. 200804230015)the National High Technology Research and Development Program of China (863 Program) (No. 2006AA10A401)
文摘RNA helicases of the DEAD-box and related families are involved in various cellular processes including DNA replication, DNA repair, and RNA processing. However, the function of DEAD-box proteins in aquaculture species is poorly understood at molecular level. We obtained the full-length cDNA sequences of two genes encoding helicase-related proteins, Fc-vasa and Fc-PL10a, from the testes of Chinese shrimp, Fenneropenaeus chinensis. The two predicted amino acid sequences contain all the conserved motifs characterized by the DEAD-box family and several RGG repeats in the N-terminal regions. Homology and phylogenetic analyses indicate that they belong to the vasa and PLIO subfamilies. The three-dimensional structures of the two proteins were predicted with a homology modeling approach. Both core proteins consist of two tandem RecA-like domains similar to those of the DEAD-box RNA helicase. Using reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR we found that Fc-vasa was expressed specifically in the adult gonads. Transcription decreased in the ovary but increased in the testis during gonadal development. Fc-PL10a expression was widely distributed in the tissues we examined. Using in situ hybridization, we demonstrated that the Fc-vasa transcript is localized to the cytoplasm of the spermatogonia and oocytes. Thus, our results suggest that Fc-wasa plays an important role in germ-line development, and has utility as a germ cell lineage marker which will help to generate new insight into the origin and differentiation of germ cells as well as the regulation of reproduction in F. chinensis.