通过热力学分析、扫描电镜和EDS能谱分析等方法,系统研究了一种典型含钛超纯铁素体不锈钢(/%:≤0.01C,17.5~18.5Cr,0.40~0.55Nb,0.10~0.25Ti)80 t K-OBM-S-VOD-LF-200 mm×1 240 mm CCM过程夹杂物的衍变。结果表明,VOD还原期采用Si...通过热力学分析、扫描电镜和EDS能谱分析等方法,系统研究了一种典型含钛超纯铁素体不锈钢(/%:≤0.01C,17.5~18.5Cr,0.40~0.55Nb,0.10~0.25Ti)80 t K-OBM-S-VOD-LF-200 mm×1 240 mm CCM过程夹杂物的衍变。结果表明,VOD还原期采用Si-Al复合脱氧,夹杂物类型以Al2O3-CaO-SiO2-MgO和Al2O3-CaO-MgO为主,钛合金化后夹杂物转变为Al2O3-CaO-TiOx-MgO,由于此类夹杂物熔点高、尺寸大,且很难通过钙处理变性,容易聚集造成水口堵塞。通过提高铝钛比至0.11以上,降低钛合金化前钢中全氧含量至25×10-6以下,使用纯净的钛铁合金可以避免形成大尺寸的含TiOx夹杂物。展开更多
The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal expos...The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal exposure were studied. The powder composites were prepared by high-energy ball milling for up to 10 h. Single line tracks of the powders were laser melted. Optical and scanning electron microscopy, XRD analysis and differential scanning calorimetry were used to study microstructural evolution. The results showed that the Cu addition promotes an effective mechanical alloying of aluminum with Ti O2 from the start of milling, resulting in higher microhardness(up to HV 290), while the PCA, on the contrary, postpones this process. In both cases, the composite granules with uniform distribution of Ti O2 particles were formed. Subsequent heating of mechanically alloyed materials causes the activation of an exothermic reaction of Ti O2 reduction with aluminum, the start temperature of which, in the case of Cu addition,shifts to lower values, that is, the transformation begins in the solid state. Besides, the Cu-added material after laser melting demonstrates a more dispersed and uniform structure which positively affects its microhardness.展开更多
New Al4C3-containing Al-Ti-C master alloys (Al-0.6Ti-1C and Al-1Ti-1C) were developed by introducing Ti element into Al-C melt using melt reaction method,in which most of the TiC particles distribute around Al4C3 part...New Al4C3-containing Al-Ti-C master alloys (Al-0.6Ti-1C and Al-1Ti-1C) were developed by introducing Ti element into Al-C melt using melt reaction method,in which most of the TiC particles distribute around Al4C3 particles. It is believed that most of the C firstly reacts with Al melt and form Al4C3 particles by the reaction Al(l)+C(s)→Al4C3(s),and after adding Ti into the Al-C melt,the size of Al4C3 particles is decreased and the distribution of Al4C3 is improved through the reaction Ti(solute)+Al4C3(s)→ TiC(s)+Al(l). With the addition of 1% Al-1Ti-1C master alloy,the average grain size of AZ31 is reduced sharply from 850 μm to 200 μm,and the grain morphology of α-Mg transits from a fully-developed equiaxed dendritic structure to a petal-like shape. Al-C-O-Mn-Fe compounds are proposed to be potent nucleating substrates for primary Mg. Appropriate addition of Ti is believed to increase the grain refinement efficiency of Al4C3-containing Al-Ti-C master alloys in AZ31 alloy.展开更多
The physicochemical properties of Pd and Pd-Pt catalysts which possess different Ce doping position were investigated by techniques of TEM, XRD, N2 adsorption-desorption, XPS and FT-IR. The catalytic performance for m...The physicochemical properties of Pd and Pd-Pt catalysts which possess different Ce doping position were investigated by techniques of TEM, XRD, N2 adsorption-desorption, XPS and FT-IR. The catalytic performance for methanol total oxidation was examined to study the effects of Ce adding position.CeO2-Al2 O3-TiO2(CAT) catalysts that Ce is directly introduced into support show higher reactivity and CO2 selectivity than CeO2/Al2 O3-TiO2(Ce/AT) samples in which Ce is loaded by impregnation method.The characterization results reveal that the Ce doping position does not cause obvious otherness of basic crystalline phase and mesoporous structure of support. However, the Ce doping position affects the pore shapes of support and then influences the pore diameter. CAT catalysts possess more abundant adsorbed oxygen and more Ti3+ can transform the more gaseous oxygen into the active oxygen species on the catalyst surface, which is beneficial to the reaction. The Al-O-Ti bridges in CAT facilitate the cooperation of Al and Ti species, which further speeds up the reaction rate.展开更多
文摘通过热力学分析、扫描电镜和EDS能谱分析等方法,系统研究了一种典型含钛超纯铁素体不锈钢(/%:≤0.01C,17.5~18.5Cr,0.40~0.55Nb,0.10~0.25Ti)80 t K-OBM-S-VOD-LF-200 mm×1 240 mm CCM过程夹杂物的衍变。结果表明,VOD还原期采用Si-Al复合脱氧,夹杂物类型以Al2O3-CaO-SiO2-MgO和Al2O3-CaO-MgO为主,钛合金化后夹杂物转变为Al2O3-CaO-TiOx-MgO,由于此类夹杂物熔点高、尺寸大,且很难通过钙处理变性,容易聚集造成水口堵塞。通过提高铝钛比至0.11以上,降低钛合金化前钢中全氧含量至25×10-6以下,使用纯净的钛铁合金可以避免形成大尺寸的含TiOx夹杂物。
基金the Ministry of Education and Science of the Russian Federation in the framework of the State Assignment to the Universities(Project No.11.7172.2017/8.9).
文摘The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal exposure were studied. The powder composites were prepared by high-energy ball milling for up to 10 h. Single line tracks of the powders were laser melted. Optical and scanning electron microscopy, XRD analysis and differential scanning calorimetry were used to study microstructural evolution. The results showed that the Cu addition promotes an effective mechanical alloying of aluminum with Ti O2 from the start of milling, resulting in higher microhardness(up to HV 290), while the PCA, on the contrary, postpones this process. In both cases, the composite granules with uniform distribution of Ti O2 particles were formed. Subsequent heating of mechanically alloyed materials causes the activation of an exothermic reaction of Ti O2 reduction with aluminum, the start temperature of which, in the case of Cu addition,shifts to lower values, that is, the transformation begins in the solid state. Besides, the Cu-added material after laser melting demonstrates a more dispersed and uniform structure which positively affects its microhardness.
基金Project(50625101) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(106103) supported by Key Project of Science and Technology Research of Ministry of Education of China
文摘New Al4C3-containing Al-Ti-C master alloys (Al-0.6Ti-1C and Al-1Ti-1C) were developed by introducing Ti element into Al-C melt using melt reaction method,in which most of the TiC particles distribute around Al4C3 particles. It is believed that most of the C firstly reacts with Al melt and form Al4C3 particles by the reaction Al(l)+C(s)→Al4C3(s),and after adding Ti into the Al-C melt,the size of Al4C3 particles is decreased and the distribution of Al4C3 is improved through the reaction Ti(solute)+Al4C3(s)→ TiC(s)+Al(l). With the addition of 1% Al-1Ti-1C master alloy,the average grain size of AZ31 is reduced sharply from 850 μm to 200 μm,and the grain morphology of α-Mg transits from a fully-developed equiaxed dendritic structure to a petal-like shape. Al-C-O-Mn-Fe compounds are proposed to be potent nucleating substrates for primary Mg. Appropriate addition of Ti is believed to increase the grain refinement efficiency of Al4C3-containing Al-Ti-C master alloys in AZ31 alloy.
基金Project supported by the Key Program of National Natural Science Foundation of China(21336006)the Shanxi Province Scientific and Technological Project(20140313002-2)
文摘The physicochemical properties of Pd and Pd-Pt catalysts which possess different Ce doping position were investigated by techniques of TEM, XRD, N2 adsorption-desorption, XPS and FT-IR. The catalytic performance for methanol total oxidation was examined to study the effects of Ce adding position.CeO2-Al2 O3-TiO2(CAT) catalysts that Ce is directly introduced into support show higher reactivity and CO2 selectivity than CeO2/Al2 O3-TiO2(Ce/AT) samples in which Ce is loaded by impregnation method.The characterization results reveal that the Ce doping position does not cause obvious otherness of basic crystalline phase and mesoporous structure of support. However, the Ce doping position affects the pore shapes of support and then influences the pore diameter. CAT catalysts possess more abundant adsorbed oxygen and more Ti3+ can transform the more gaseous oxygen into the active oxygen species on the catalyst surface, which is beneficial to the reaction. The Al-O-Ti bridges in CAT facilitate the cooperation of Al and Ti species, which further speeds up the reaction rate.