Because of the different conductivities between the primary phase (low electric conduc tivity) and the metal melt, electromagnetic force scarcely acts on the primary phase. Thus, an electromagnetic repulsive force ap...Because of the different conductivities between the primary phase (low electric conduc tivity) and the metal melt, electromagnetic force scarcely acts on the primary phase. Thus, an electromagnetic repulsive force applied by the metal melt exerts on the pri mary phase when the movement of the melt in the direction of electromagnetic force is limited. As a result, the repulsive force exerts on the primary phase to push them to move in the direction opposite to that of the electromagnetic force when the metal melt with primary phase solidifies under an electromagnetic force field. Based on this, a new method for production of in situ surface composite and gradient material by electromagnetic force is proposed. An in situ primary Si reinforced surface composite of Al-15wt%Si alloy and gradient material of Al-l9wt%Si alloy were produced by this method. The microhardness of the primary Si is HV1320. The reinforced phase size is in the range from 40μm to 100μm. The wear resistance of Al-Si alloy gradient material can be more greatly increased than that of their matrix material.展开更多
A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a s...A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a suitable route for the preparation of high volumes of graphene derivatives. P-substituted graphene material is developed for its application in hydrogen sorption in room temperature. Phosphorous doped graphene material with multi-layers of graphene shows a nearly ~2.2 wt% hydrogen sorption capacity at 298 K and 100 bar. This value is higher than that for reduced graphene oxide (RGO without phosphorous).展开更多
The long afterglow SrAl_2O_4: Dy, Eu phosphor is liable tohydrolyze in water with deterioration of the lumin- escent property.SrAl_2O_4: Dy, Eu phosphors were therefore heated at 60-90 deg. C inTEOS sol to form a surf...The long afterglow SrAl_2O_4: Dy, Eu phosphor is liable tohydrolyze in water with deterioration of the lumin- escent property.SrAl_2O_4: Dy, Eu phosphors were therefore heated at 60-90 deg. C inTEOS sol to form a surface gel and then heat-treated at 400 deg. C toobtain SiO_2 coated phosphors. Observation by ?Transmission ElectronMicroscope (TE) and X- ray photoelectron spectroscopy (XPS) showsthat a thin silica film forms on the surface of the phosphors. Thecoating procedure can be illustrated by a four-step process and thetransparent silica film can suppress the hydrolysis process, so thatthe luminescent properties of the phosphors are unimpaired or evenbetter.展开更多
Long afterglow phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) were synthesized by microemulsion method, and their crystal structure and luminescent properties were compared and investigated. XRD patterns of samp...Long afterglow phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) were synthesized by microemulsion method, and their crystal structure and luminescent properties were compared and investigated. XRD patterns of samples indicate that phosphors CaAl2O4:Eu^2+, Dy^3+ and SrAl2O4 : Eu^2+, Dy^3+ are with monoelinie crystal structure and phosphor BaAl2O4:Eu^2+ , Dy^3+ is with hexagonal crystal structure. The wide range of excitation spectrum of phosphors MAl2O4: Eu^2 + , Dy^3+ (M = Ca,Sr, Ba) indicates that the luminescent materials can he excited by light from ultraviolet ray to visible light and the maximum emission wavelength of phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) is found mainly at λem of 440 nm (M = Ca), 520 nm (M = Sr) and 496 nm (M = Ba) respectively, the corresponding colors of emission light are blue, green and eyna-green respectively. The afterglow decay tendency of phosphors can he summarized as three processes: initial rapid decay, intermediate transitional decay and very long slow decay. Afterglow decay curves coincide with formula I = At^ - n, and the sequence of afterglow intensity and time is Sr 〉 Ca 〉 Ba.展开更多
The MAO (Micro-Arc Oxidation) process is applied to a eutectic Al-Si alloy(Al-12.0 percent Si-l.0 percent Cu-0.9 percent Mg (mass fraction)). The oxide ceramic layer wasfabricated with about 220 mum thickness and 3000...The MAO (Micro-Arc Oxidation) process is applied to a eutectic Al-Si alloy(Al-12.0 percent Si-l.0 percent Cu-0.9 percent Mg (mass fraction)). The oxide ceramic layer wasfabricated with about 220 mum thickness and 3000 Hv micro-hardness. By XRD (X-ray diffractometry)and DSC (differential scanning calorimetry) analyses, the oxide layer consists of amorphous Al_2O_3,which is distinct from the results reported by the other researchers. The SEM photographs of suchlayer show that the layer is fixed tightly on the substrate alloy. So this alloy can he used in thehigh temperature and friction environment alter it is treated with such process.展开更多
As the world's population exponentially grows,so does the need for the production of food,with cereal production growing annually from an estimated 1.0 billion to 2.5 billion tons within the last few decades.This ...As the world's population exponentially grows,so does the need for the production of food,with cereal production growing annually from an estimated 1.0 billion to 2.5 billion tons within the last few decades.This rapid growth in food production results in an ever increasing amount of agricultural wastes,of which already occupies nearly 50%of the total landfill area.For example,is the billions of dry tons of cellulose-containing spent coffee grounds disposed in landfills annually.This paper seeks to provide a method for isolating cellulose nanocrystals(CNCs)from spent coffee grounds,in order to recycle and utilize the cellulosic waste material which would otherwise have no applications.CNCs have already been shown to have vast applications in the polymer engineering field,mainly utilized for their high strength to weight ratio for reinforcement of polymer-based nanocomposites.A successful method of purifying and hydrolyzing the spent coffee grounds in order to isolate usable CNCs was established.The CNCs were then characterized using current techniques to determine important chemical and physical properties.A few crucial properties determined were aspect ratio of 12±3,crystallinity of 74.2%,surface charge density of(48.4±6.2)mM/kg cellulose,and the ability to successfully reinforce a polymer based nanocomposite.These characteristics compare well to other literature data and common commercial sources of CNCs.展开更多
As the refiner or modifier, the master alloys containing high concentration phosphor are widely used in preparing eutectic or hypereutectic Al-Si alloys. To study the effect of phosphor addition on the eutectic solidi...As the refiner or modifier, the master alloys containing high concentration phosphor are widely used in preparing eutectic or hypereutectic Al-Si alloys. To study the effect of phosphor addition on the eutectic solidification and microstructure of the Al-13%Si alloy, an investigation has been undertaken by means of thermal analysis and micro/macro-structure observation. Results indicate that addition of phosphor in near eutectic Al-Si alloy promotes the nucleation of eutectic but has little refinement impact on primary Si particles as expected. Conversely, both primary Si particles and eutectic Si flakes become slightly coarser in P-rich alloys. The coarsening of eutectic Si flakes ties closely to the increased eutectic growth temperature with phosphor addition. The eutectic solidification of the alloy proceeds from the near mold zone towards the center, and it is also found that a few independent nucleation regions emerge in liquid at the solidification front due to the addition of phosphor.展开更多
The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with r...The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.展开更多
实现高发光效率、高亮度和良好的热稳定性是固态照明的迫切要求。因此,用于高功率发光二极管或激光二极管(LED/LD)的高性能荧光转换材料具有重要的研究意义。在这项工作中,通过将Lu^(3+)离子引入YAG∶Ce荧光陶瓷中方法作为有效策略来改...实现高发光效率、高亮度和良好的热稳定性是固态照明的迫切要求。因此,用于高功率发光二极管或激光二极管(LED/LD)的高性能荧光转换材料具有重要的研究意义。在这项工作中,通过将Lu^(3+)离子引入YAG∶Ce荧光陶瓷中方法作为有效策略来改善YAG∶Ce荧光材料的发光性能。采用固相反应和真空烧结法制Article ID:1000-7032(2023)06-0964^(-1)1收稿日期:2022^(-1)2-31;修订日期:2023-01-30基金项目:中国科学院战略性先导科技专项(XDA22010301)Supported by The Strategic Priority Research Program of The Chinese Academy of Sciences(XDA22010301)第6 HUANG Xinyou期,et al.:LuYAG∶Ce Transparent Ceramic Phosphors for High-brightness Solid-state…备了不同Lu^(3+)含量的(Lu,Y)_(3)Al_(5)O_(12)∶Ce荧光陶瓷(LuYAG∶Ce荧光陶瓷)。随着Lu^(3+)含量的增加,LuYAG∶Ce荧光陶瓷中的Y^(3+)位点被Lu^(3+)位点取代,Ce^(3+)的发射峰呈现从573 nm到563 nm的蓝移现象。当Lu^(3+)含量为60%时,通过将LuYAG∶Ce荧光陶瓷与蓝光LED组合,其发光强度达到最大值,流明效率达到114 lm∙W^(-1)。使用450 nm激光源与LuYAG∶Ce荧光陶瓷构建了透射模式下的激光驱动照明装置。随着功率密度从2.2 W·mm^(-2)增加到39 W·mm^(-2),Lu^(3+)含量为60%的荧光陶瓷光通量从128 lm增加到1874 lm,且没有发光饱和的迹象,最佳发光效率达到128 lm·W^(-1)。因此,LuYAG∶Ce荧光陶瓷有望成为高功率LED/LD照明的潜在荧光转换材料。展开更多
The Eu 2+ and Dy 3+ codoped Sr 2MgSi 2O 7: Eu 2+ ,Dy 3+ blue emission long afterglow phosphor was synthesized and its photoluminescence properties were studied. It is known with the measurement method of X ray diffrac...The Eu 2+ and Dy 3+ codoped Sr 2MgSi 2O 7: Eu 2+ ,Dy 3+ blue emission long afterglow phosphor was synthesized and its photoluminescence properties were studied. It is known with the measurement method of X ray diffraction pattern that the luminescent material is an akermanite crystal. It is shown with the decay curve that its afterglow properties are better than the traditional (Ca,Sr)S:Bi blue long afterglow phosphor. Its decay curve is in accordance with the calculated results of the formula lg I=A+B 1 ×lg t +B 2×(lg t ) 2. Ther moluminescence spectra identified the existence of long afterglow luminescence. The excitation and emission spectra and microstructure of the phosphor were also investigated in detail.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50001008)the China Postdoctoral Science Foundation.
文摘Because of the different conductivities between the primary phase (low electric conduc tivity) and the metal melt, electromagnetic force scarcely acts on the primary phase. Thus, an electromagnetic repulsive force applied by the metal melt exerts on the pri mary phase when the movement of the melt in the direction of electromagnetic force is limited. As a result, the repulsive force exerts on the primary phase to push them to move in the direction opposite to that of the electromagnetic force when the metal melt with primary phase solidifies under an electromagnetic force field. Based on this, a new method for production of in situ surface composite and gradient material by electromagnetic force is proposed. An in situ primary Si reinforced surface composite of Al-15wt%Si alloy and gradient material of Al-l9wt%Si alloy were produced by this method. The microhardness of the primary Si is HV1320. The reinforced phase size is in the range from 40μm to 100μm. The wear resistance of Al-Si alloy gradient material can be more greatly increased than that of their matrix material.
文摘A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a suitable route for the preparation of high volumes of graphene derivatives. P-substituted graphene material is developed for its application in hydrogen sorption in room temperature. Phosphorous doped graphene material with multi-layers of graphene shows a nearly ~2.2 wt% hydrogen sorption capacity at 298 K and 100 bar. This value is higher than that for reduced graphene oxide (RGO without phosphorous).
基金This project is financially supported by the National Natural Science Foundation of China (No. 59872016)
文摘The long afterglow SrAl_2O_4: Dy, Eu phosphor is liable tohydrolyze in water with deterioration of the lumin- escent property.SrAl_2O_4: Dy, Eu phosphors were therefore heated at 60-90 deg. C inTEOS sol to form a surface gel and then heat-treated at 400 deg. C toobtain SiO_2 coated phosphors. Observation by ?Transmission ElectronMicroscope (TE) and X- ray photoelectron spectroscopy (XPS) showsthat a thin silica film forms on the surface of the phosphors. Thecoating procedure can be illustrated by a four-step process and thetransparent silica film can suppress the hydrolysis process, so thatthe luminescent properties of the phosphors are unimpaired or evenbetter.
文摘Long afterglow phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) were synthesized by microemulsion method, and their crystal structure and luminescent properties were compared and investigated. XRD patterns of samples indicate that phosphors CaAl2O4:Eu^2+, Dy^3+ and SrAl2O4 : Eu^2+, Dy^3+ are with monoelinie crystal structure and phosphor BaAl2O4:Eu^2+ , Dy^3+ is with hexagonal crystal structure. The wide range of excitation spectrum of phosphors MAl2O4: Eu^2 + , Dy^3+ (M = Ca,Sr, Ba) indicates that the luminescent materials can he excited by light from ultraviolet ray to visible light and the maximum emission wavelength of phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) is found mainly at λem of 440 nm (M = Ca), 520 nm (M = Sr) and 496 nm (M = Ba) respectively, the corresponding colors of emission light are blue, green and eyna-green respectively. The afterglow decay tendency of phosphors can he summarized as three processes: initial rapid decay, intermediate transitional decay and very long slow decay. Afterglow decay curves coincide with formula I = At^ - n, and the sequence of afterglow intensity and time is Sr 〉 Ca 〉 Ba.
基金This project is financially supported by the National Natural Science Foundation of China (No. 50071028) the Natural Science Foundation of Shandong Province (No. L2000F01)
文摘The MAO (Micro-Arc Oxidation) process is applied to a eutectic Al-Si alloy(Al-12.0 percent Si-l.0 percent Cu-0.9 percent Mg (mass fraction)). The oxide ceramic layer wasfabricated with about 220 mum thickness and 3000 Hv micro-hardness. By XRD (X-ray diffractometry)and DSC (differential scanning calorimetry) analyses, the oxide layer consists of amorphous Al_2O_3,which is distinct from the results reported by the other researchers. The SEM photographs of suchlayer show that the layer is fixed tightly on the substrate alloy. So this alloy can he used in thehigh temperature and friction environment alter it is treated with such process.
文摘As the world's population exponentially grows,so does the need for the production of food,with cereal production growing annually from an estimated 1.0 billion to 2.5 billion tons within the last few decades.This rapid growth in food production results in an ever increasing amount of agricultural wastes,of which already occupies nearly 50%of the total landfill area.For example,is the billions of dry tons of cellulose-containing spent coffee grounds disposed in landfills annually.This paper seeks to provide a method for isolating cellulose nanocrystals(CNCs)from spent coffee grounds,in order to recycle and utilize the cellulosic waste material which would otherwise have no applications.CNCs have already been shown to have vast applications in the polymer engineering field,mainly utilized for their high strength to weight ratio for reinforcement of polymer-based nanocomposites.A successful method of purifying and hydrolyzing the spent coffee grounds in order to isolate usable CNCs was established.The CNCs were then characterized using current techniques to determine important chemical and physical properties.A few crucial properties determined were aspect ratio of 12±3,crystallinity of 74.2%,surface charge density of(48.4±6.2)mM/kg cellulose,and the ability to successfully reinforce a polymer based nanocomposite.These characteristics compare well to other literature data and common commercial sources of CNCs.
基金financially supported by the National Natural Science Foundation of China under grant No. 50771031
文摘As the refiner or modifier, the master alloys containing high concentration phosphor are widely used in preparing eutectic or hypereutectic Al-Si alloys. To study the effect of phosphor addition on the eutectic solidification and microstructure of the Al-13%Si alloy, an investigation has been undertaken by means of thermal analysis and micro/macro-structure observation. Results indicate that addition of phosphor in near eutectic Al-Si alloy promotes the nucleation of eutectic but has little refinement impact on primary Si particles as expected. Conversely, both primary Si particles and eutectic Si flakes become slightly coarser in P-rich alloys. The coarsening of eutectic Si flakes ties closely to the increased eutectic growth temperature with phosphor addition. The eutectic solidification of the alloy proceeds from the near mold zone towards the center, and it is also found that a few independent nucleation regions emerge in liquid at the solidification front due to the addition of phosphor.
基金the National Natural Science Foundation of China (No. 51602126)the National Key Research and Development Plan of China (No. 2016YFB0303505)+1 种基金China and University of Jinan Postdoctoral Science Foundation (No. 2017M622118 and XBH1716)the 111 Project of International Corporation on Advanced Cement-based Materials (D17001).
文摘The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.
文摘实现高发光效率、高亮度和良好的热稳定性是固态照明的迫切要求。因此,用于高功率发光二极管或激光二极管(LED/LD)的高性能荧光转换材料具有重要的研究意义。在这项工作中,通过将Lu^(3+)离子引入YAG∶Ce荧光陶瓷中方法作为有效策略来改善YAG∶Ce荧光材料的发光性能。采用固相反应和真空烧结法制Article ID:1000-7032(2023)06-0964^(-1)1收稿日期:2022^(-1)2-31;修订日期:2023-01-30基金项目:中国科学院战略性先导科技专项(XDA22010301)Supported by The Strategic Priority Research Program of The Chinese Academy of Sciences(XDA22010301)第6 HUANG Xinyou期,et al.:LuYAG∶Ce Transparent Ceramic Phosphors for High-brightness Solid-state…备了不同Lu^(3+)含量的(Lu,Y)_(3)Al_(5)O_(12)∶Ce荧光陶瓷(LuYAG∶Ce荧光陶瓷)。随着Lu^(3+)含量的增加,LuYAG∶Ce荧光陶瓷中的Y^(3+)位点被Lu^(3+)位点取代,Ce^(3+)的发射峰呈现从573 nm到563 nm的蓝移现象。当Lu^(3+)含量为60%时,通过将LuYAG∶Ce荧光陶瓷与蓝光LED组合,其发光强度达到最大值,流明效率达到114 lm∙W^(-1)。使用450 nm激光源与LuYAG∶Ce荧光陶瓷构建了透射模式下的激光驱动照明装置。随着功率密度从2.2 W·mm^(-2)增加到39 W·mm^(-2),Lu^(3+)含量为60%的荧光陶瓷光通量从128 lm增加到1874 lm,且没有发光饱和的迹象,最佳发光效率达到128 lm·W^(-1)。因此,LuYAG∶Ce荧光陶瓷有望成为高功率LED/LD照明的潜在荧光转换材料。
文摘The Eu 2+ and Dy 3+ codoped Sr 2MgSi 2O 7: Eu 2+ ,Dy 3+ blue emission long afterglow phosphor was synthesized and its photoluminescence properties were studied. It is known with the measurement method of X ray diffraction pattern that the luminescent material is an akermanite crystal. It is shown with the decay curve that its afterglow properties are better than the traditional (Ca,Sr)S:Bi blue long afterglow phosphor. Its decay curve is in accordance with the calculated results of the formula lg I=A+B 1 ×lg t +B 2×(lg t ) 2. Ther moluminescence spectra identified the existence of long afterglow luminescence. The excitation and emission spectra and microstructure of the phosphor were also investigated in detail.