The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The resu...The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The results show that the wear rate of the rheocast alloy is lower than that of the alloy produced by conventional casting process under the same applied load. The fine particle-likeδ-Al4(Fe,Mn)Si2 and polygonalα-Al15(Fe,Mn)3Si2 phases help to improve the wear resistance of rheocast alloys. As the volume fraction of fine Fe-bearing compounds increases, the wear rate of the rheocast alloy decreases. Moreover, the wear rate of rheocast alloy increases with the increase of applied load from 50 to 200 N. For the rheocast alloy with 3% Fe, oxidation wear is the main mechanism at low applied load (50 N). At higher applied loads, a combination of delamination and oxidation wear is the dominant wear mechanism.展开更多
The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highr...The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highresolution transmission electron microscopy(HRTEM). Besides, the impact resistances of T6I6 and T6 motor shells of new energy vehicles made of Al-Si-Mg-Cu cast alloy were compared using a trolley crash test. The results indicated that the main strengthening-phases of the T6 peak-aged and T6I6 peak-aged alloy were GP zone and β″ precipitates. T6I6treatment can increase the density and size of β″ precipitates in peak-aged alloy and enhance both its tensile strength(σb)and elongation(δ). The dynamic toughness values of T6I6 samples are 50.34 MJ/m^(3) at 2000 s^(-1) and 177.34 MJ/m^(3) at 5000 s^(-1) which are 20% and 12% higher than those of T6 samples, respectively. Compared with a T6 shell, the overall deformation of T6I6 shell is more uniform during the crash test. At an impact momentum of 3.5×10;kg·m/s, the T6I6shell breaks down at 0.38 s which is 0.10 s later than the T6 shell.展开更多
Controlling process parameters of lost foam casting (LFC) enables this process to produce defect-free complex shape castings. An experimental investigation on lost foam casting of an A1-Si-Cu cast alloy was carried ...Controlling process parameters of lost foam casting (LFC) enables this process to produce defect-free complex shape castings. An experimental investigation on lost foam casting of an A1-Si-Cu cast alloy was carried out. The effects of pouting temperature, slurry viscosity, vibration time and sand size on surface finish, shrinkage porosity and eutectic silicon spacing of thin-wall casting were investigated. A full two-level factorial design of experimental technique was used to identify the significant manufacturing factors affecting the properties of casting. Pouring temperature was found as the most significant factor affecting A1-Si-Cu lost foam casting quality. It was shown that flask vibration time interacted with pouring temperature influenced euteetic silicon spacing and porosity percentage significantly. The results also revealed that the surface quality of the samples cast in fine sand moulds at higher pouring temperatures was almost unchanged, while those cast in coarse sand moulds possessed lower surface qualities. Furthermore, variation in slurry viscosity showed no significant effect on the evaluated properties compared to other parameters.展开更多
基金Project(2015M572135)supported by the China Postdoctoral Science FoundationProject(2012CB619600)supported by the National Basic Research Program of China
文摘The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The results show that the wear rate of the rheocast alloy is lower than that of the alloy produced by conventional casting process under the same applied load. The fine particle-likeδ-Al4(Fe,Mn)Si2 and polygonalα-Al15(Fe,Mn)3Si2 phases help to improve the wear resistance of rheocast alloys. As the volume fraction of fine Fe-bearing compounds increases, the wear rate of the rheocast alloy decreases. Moreover, the wear rate of rheocast alloy increases with the increase of applied load from 50 to 200 N. For the rheocast alloy with 3% Fe, oxidation wear is the main mechanism at low applied load (50 N). At higher applied loads, a combination of delamination and oxidation wear is the dominant wear mechanism.
基金Projects(52075166, 51875197) supported by the National Natural Science Foundation of ChinaProjects(2019RS2064,2019GK5043) supported by the Science and Technology Planning Project of Hunan Province,China。
文摘The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highresolution transmission electron microscopy(HRTEM). Besides, the impact resistances of T6I6 and T6 motor shells of new energy vehicles made of Al-Si-Mg-Cu cast alloy were compared using a trolley crash test. The results indicated that the main strengthening-phases of the T6 peak-aged and T6I6 peak-aged alloy were GP zone and β″ precipitates. T6I6treatment can increase the density and size of β″ precipitates in peak-aged alloy and enhance both its tensile strength(σb)and elongation(δ). The dynamic toughness values of T6I6 samples are 50.34 MJ/m^(3) at 2000 s^(-1) and 177.34 MJ/m^(3) at 5000 s^(-1) which are 20% and 12% higher than those of T6 samples, respectively. Compared with a T6 shell, the overall deformation of T6I6 shell is more uniform during the crash test. At an impact momentum of 3.5×10;kg·m/s, the T6I6shell breaks down at 0.38 s which is 0.10 s later than the T6 shell.
基金the Ministry of Higher Education of Malaysia (MOHE) for the financial support under the vote GUP-Q.J130000.2501.04H18
文摘Controlling process parameters of lost foam casting (LFC) enables this process to produce defect-free complex shape castings. An experimental investigation on lost foam casting of an A1-Si-Cu cast alloy was carried out. The effects of pouting temperature, slurry viscosity, vibration time and sand size on surface finish, shrinkage porosity and eutectic silicon spacing of thin-wall casting were investigated. A full two-level factorial design of experimental technique was used to identify the significant manufacturing factors affecting the properties of casting. Pouring temperature was found as the most significant factor affecting A1-Si-Cu lost foam casting quality. It was shown that flask vibration time interacted with pouring temperature influenced euteetic silicon spacing and porosity percentage significantly. The results also revealed that the surface quality of the samples cast in fine sand moulds at higher pouring temperatures was almost unchanged, while those cast in coarse sand moulds possessed lower surface qualities. Furthermore, variation in slurry viscosity showed no significant effect on the evaluated properties compared to other parameters.