Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L...Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.展开更多
Numerical simulation is one of the important auxiliary methods for studying materials-related problems. In this study, phase field simulation was employed to investigate the refinement behavior of BAg55CuZn-x B brazin...Numerical simulation is one of the important auxiliary methods for studying materials-related problems. In this study, phase field simulation was employed to investigate the refinement behavior of BAg55CuZn-x B brazing alloys. Simulation and experimental studies were conducted for B contents ranging from 0 wt.% to 0.2 wt.%. The results demonstrated that the addition of 0.05 wt.% B in the brazing alloy leads to a significant refinement effect. As the B content increases, the grain size further reduces, and a refinement stagnation phenomenon occurs after exceeding 0.15 wt.%. The solidification process of brazing alloys with different B content was predicted by simulation, and the simulation results showed that with the increase of B content, the initial number of nucleation increased, and the radius of the dendrite tip decreased. The simulation results are in good agreement with the experimental findings, providing further evidence of the refining effect of the B element and the reliable predictive capability of the phase field model.展开更多
To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that alt...To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).展开更多
The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied b...The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated.展开更多
Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning ...Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning electron microscopy and X-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. As a result, influences of filler metals on microstructures and mechanical properties of electron beam welded titanium-stainless steel joints were discussed. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. For each type of the filler metal, the type of solid solution and interfacial intermetallics depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti+Ni3Ti+NiTi2, TiFe, and Cu2Ti+CuTi+CuTi2 in the joints welded with Ni, V, and Cu filler metals, respectively. The tensile strengths of the joints were dependent on the hardness of the interfacial intermetallics. The joint welded with Ag filler metal had the highest tensile strength, which is about 310 MPa.展开更多
Titanium alloy (Ti-Al-V alloy) substrate was brazed with stainless steel (STS304) using filler metal.At an optimized brazing condition,various filler metals were used.Microstructures were observed at each condition.Fi...Titanium alloy (Ti-Al-V alloy) substrate was brazed with stainless steel (STS304) using filler metal.At an optimized brazing condition,various filler metals were used.Microstructures were observed at each condition.Filler metals were titanium based 40Ti-20Zr-20Cu-20Ni,silver based Ag 5Pd,and nickel based Ni-7Cr-3.1B-4.5Si-3Fe-0.06C (BNi2) and Ni-14Cr-10P-0.06C (BNi7).To select a good filler metal for brazing process,wetting test was performed at 880-1050 °C.It was not brazed using silver based filler metals,but at the conditions using titanium and nickel based filler metals had brazed zone between titanium alloy and stainless steel.However,titanium alloy was eroded during brazing using titanium based filler metals.Nickel based filler metal has a good brazed zone between titanium alloy and stainless steel among the filler metals.展开更多
Melting temperature, spreadability, mechanical properties and the microstructures of joints brazed with silver-base filler metals including different amounts of Ga and/or In were studied respectively in this paper, an...Melting temperature, spreadability, mechanical properties and the microstructures of joints brazed with silver-base filler metals including different amounts of Ga and/or In were studied respectively in this paper, and the results show that the melting temperature of the silver-base filler metals is decreased, spreadability of the silver-base filler metals is improved, and the microstructures of silver-base filh, r metals are refined obviously with the addition of Ga and/or In. Using copper and brass plates as base metal and brazing with flame method, the mechanical properties of the lap-joint and butt joint were also examined and analyzed respectively, and the results indicate that the fracture position of two kinds of brazed joints occurred on the base metal, except for the lap-joint of brass, which shows better mechanical properties of the joints brazed with the silver- based filler metals including Ga. For the lap-joint of brass, the tensile strength gradually increased with the increase of Ga content, while the addition of In has little effect on mechanical properties. It is also found that the best comprehensive properties of cadmium-free Ag-Cu-Zn filler metals are obtained when Ga content is about 3.0 wt. % and In content is between 1.5 wt. % and 2. 0 wt. %.展开更多
Al-6.5Si-42Zn and Al-6.5Si-42Zn-0.09Sr filler metals were used for brazing 6061 aluminum alloy. Air cooling and water cooling were applied after brazing. Si phase morphologies in the brazing alloy and the brazed joint...Al-6.5Si-42Zn and Al-6.5Si-42Zn-0.09Sr filler metals were used for brazing 6061 aluminum alloy. Air cooling and water cooling were applied after brazing. Si phase morphologies in the brazing alloy and the brazed joints were investigated. It was found that zinc in the Al-Si filler metals could reduce the formation of eutectic Al-Si phase and lower the brazing temperature at about 520℃. Adding 0.09wt% Sr element into the Al-6.5Si-42Zn alloy caused a-Al phase refinement and transformed acicular Si phase into the finely fiber-like. After water cooling, Zn element dissolved into the Al-Si eutectic area, and η-Zn phase disappeared in the brazed joints. Tensile strength testing results showed that the Sr-modified filler metal could enhance the strength of the brazed joints by 13% than Al-12Si, while water-cooling further improved the strength at 144 MPa.展开更多
The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. T...The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.展开更多
With BrazeTec BlueBraze the manufacturers in HVACR industry have an alternative filler metal with 10 weight-% less silver but same brazing temperatures. The performance of these new alloys has been evaluated in severa...With BrazeTec BlueBraze the manufacturers in HVACR industry have an alternative filler metal with 10 weight-% less silver but same brazing temperatures. The performance of these new alloys has been evaluated in several tests. The evaluation included wetting investigations, metallographic examinations, joint strength at different temperatures and pulsation and corrosion resistance. The results of these tests will be presented in this paper.展开更多
In this paper, nine new filler metals contained Sn and Ga based on Al 11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change th...In this paper, nine new filler metals contained Sn and Ga based on Al 11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change the structure of intermetallic compound formed in the joint during brazing, and enhance the strength of joint. But the detail mechanism need further research.展开更多
TiAl alloy and 316L stainless steel were vacuum-brazed with Zr−50.0Cu−7.1Ni−7.1Al(at.%)amorphous filler metal.The influence of brazing time and temperature on the interfacial microstructure and shear strength of the r...TiAl alloy and 316L stainless steel were vacuum-brazed with Zr−50.0Cu−7.1Ni−7.1Al(at.%)amorphous filler metal.The influence of brazing time and temperature on the interfacial microstructure and shear strength of the resultant joints was investigated.The brazed seam consisted of three layers,including two diffusion layers and one residual filler metal layer.The typical microstructure of brazed TiAl alloy/316L stainless steel joint was TiAl alloy substrate/α2-(Ti3Al)/AlCuTi/residual filler metal/Cu9Zr11+Fe23Zr6/Laves-Fe2Zr/α-(Fe,Cr)/316L stainless steel substrate.Discontinuous brittle Fe2Zr layer formed near the interface between the residual filler metal layer andα-(Fe,Cr)layer.The maximum shear strength of brazed joints reached 129 MPa when brazed at 1020℃ for 10 min.The diffusion activation energies ofα2-(Ti3Al)andα-(Fe,Cr)phases were−195.769 and−112.420 kJ/mol,respectively,the diffusion constants for these two phases were 3.639×10^(−6) and 7.502×10^(−10)μm^(2)/s,respectively.Cracks initiated at Fe2Zr layer and propagated into the residual filler metal layer during the shear test.The Laves-Fe2Zr phase existing on the fracture surface suggested the brittle fracture mode of the brazed joints.展开更多
Using Zn-Al filler metal with Al content of 2%?22% (mass fraction) and improved CsF-AlF3 flux, wetting properties of Zn-Al filler metal on 3003 Al substrate were investigated. The mechanical property as well as the...Using Zn-Al filler metal with Al content of 2%?22% (mass fraction) and improved CsF-AlF3 flux, wetting properties of Zn-Al filler metal on 3003 Al substrate were investigated. The mechanical property as well as the microstructure of the brazed joints was also studied. The results indicate that excellent joints can be produced by means of torch brazing when the Al content is less than 8%. The metallographic structure in the brazing seam is mainly composed of Al based solid solutions and Zn based solid solutions. The high hardness value of brazing seam of the 3003 aluminum alloy is higher than that of the base metal due to the effect of solid solution strengthening. The results also show that three microstructure zones could be found at the brazing interface; i.e., base metal, diffusing zone and interface zone. The distribution of the solid solution in the brazing seam is the main factor of the tensile strength rather than the diffusion zone width near the interface.展开更多
Cerium and titanium were added to an A1-42Zn-5.5Si brazing alloy, and the subsequent microstructures of the brazing alloy and the 6061 AI alloy brazing seam were investigated. The microstructures of filler metals and ...Cerium and titanium were added to an A1-42Zn-5.5Si brazing alloy, and the subsequent microstructures of the brazing alloy and the 6061 AI alloy brazing seam were investigated. The microstructures of filler metals and brazed joints were characterized by scanning elec- tron microscopy and X-ray energy dispersion spectrometry. A new Ce-Ti phase formed around the silicon phase in the modified filler metal and this saturation phenomenon was analyzed. Interestingly, following brazing of the 6061 alloy, there is no evidence of the Ce--Ti phase in the brazing seam. Because of the mutual solubility of the brazing alloy and base metal, the quantity of the solvent increases, and the solute Ce and Ti atoms assume an undersaturated state.展开更多
The effects of Cu, Si, Ni and RE elements ( RE = La and Ce ) on the melting temperature of AI-Si filler metals were studied by orthogonal design method. The wettability of the filler metals and the shear strength of...The effects of Cu, Si, Ni and RE elements ( RE = La and Ce ) on the melting temperature of AI-Si filler metals were studied by orthogonal design method. The wettability of the filler metals and the shear strength of 6063 aluminum alloy joints brazed with the different filler metals were measured. The results show that the copper doping content has the most obvious effect on liquidas temperature ( TL ) of the Al-Si filler metals and the effect of RE content on TL is the least. Adding suitable Cu and Si can improve the wettability of the Al-Si filler metals. The shear strength of 6063 aluminum alloy joints brazed with the filler metals SIO, S15 and S20, respectively, is better than that of the joints brazed with HL401 due to the improvement of microstructure. It can improve the shear strength of the joints by brazing with the Ni- or RE-doped Al-Si-Cu filler metals.展开更多
The present work investigates the effect of filler metals and heat input on weld bead geometry and mechanical properties of alloy316 welded by using GTAW.ER309 L,ER316 L and ERNi Cr Mo-3 filler metals,are applied to s...The present work investigates the effect of filler metals and heat input on weld bead geometry and mechanical properties of alloy316 welded by using GTAW.ER309 L,ER316 L and ERNi Cr Mo-3 filler metals,are applied to study their effect on the weldment.Weld defects are examined using radiographic testing.The mechanical properties of welds are evaluated through uniaxial testing,hardness measuring,and bending test.The mechanical properties and cooling rate decrease with increasing heat input.Tensile strength,yield stress and percentage elongation of weldments using three fillers are determined.Best results are obtained using ERNi Cr Mo-3.Besides,weld nugget area,cooling time and solidification time increases with increasing heat input.Finally,applying bending test on weld samples,cracks,tearing and surface defects are not observed.展开更多
The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can b...The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.展开更多
The objective of this study is to investigate the influence of adding tiny amount of mixed rare earth ( La, Ce) and Sr to Al-20Cu-SSi-2Ni filler metal, by analyzing the microstructure, wettability and mechanical pro...The objective of this study is to investigate the influence of adding tiny amount of mixed rare earth ( La, Ce) and Sr to Al-20Cu-SSi-2Ni filler metal, by analyzing the microstructure, wettability and mechanical properties of brazed joints. The results show that with the addition of mixed rare earth (La, Ce ) into Al-2OCu-SSi-2Ni alloy, the α-Al solid solution as well as CuAl2 ( Ni) intermetallic compound phase significantly reduced, while more Al-Si eutectic phase and AI-Si-Cu ternary eutectic phase were produced. And as mixed rare earth (La, Ce ) added in, the wettability of Al-2OCu-SSi-2Ni filler metal decreased, while the shear strength of the brazed joints increased. The addition of Minor Sr modificated Al-2OCu-SSi-2Ni filler metal, further reduced the CuAl2 ( Ni ) intermetallic compound phase, which was partially replaced Al-Si-Cu ternary eutectic phase. As a result, the tensile strength as well as the wettability of the filler metal was improved.展开更多
Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed ...Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature.展开更多
The repair welding of UNS C95700manganese?aluminum bronze plates was done using different filler metals.Themicrostructure and mechanical properties of welds were studied.The main microstructural constituents wereα,β...The repair welding of UNS C95700manganese?aluminum bronze plates was done using different filler metals.Themicrostructure and mechanical properties of welds were studied.The main microstructural constituents wereα,βandκphases withdifferent morphologies.The addition of manganese decreased the percentage ofαphase in the microstructure of weldments from80%(Mn-free weld)to57%(12.5%Mn weld,mass fraction).The morphology ofκphase was lamellar in high nickel specimens andit was changed to a globular morphology for high manganese welds.Although the application of high manganese filler metal yieldedthe higher tensile and bending strengths of weldment compared with the weld using high nickel filler material,the optimummechanical properties of repair welds were obtained using a non-alloy filler material(ERCuAl-A2)for the underlay and highmanganese filler metal(ERCuMnNiAl)for filling passes.This weld presented an increase of39%in tensile strength compared withthe base metal,and no cracking was observed after bending test.展开更多
基金supported by the National Natural Science Foundation of China(52122702,52277215)the Natural Science Foundation of Heilongjiang Province of China(JQ2021E005)。
文摘Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.
基金the Major Science and Technology Project of Henan Province.(No.221100230300).
文摘Numerical simulation is one of the important auxiliary methods for studying materials-related problems. In this study, phase field simulation was employed to investigate the refinement behavior of BAg55CuZn-x B brazing alloys. Simulation and experimental studies were conducted for B contents ranging from 0 wt.% to 0.2 wt.%. The results demonstrated that the addition of 0.05 wt.% B in the brazing alloy leads to a significant refinement effect. As the B content increases, the grain size further reduces, and a refinement stagnation phenomenon occurs after exceeding 0.15 wt.%. The solidification process of brazing alloys with different B content was predicted by simulation, and the simulation results showed that with the increase of B content, the initial number of nucleation increased, and the radius of the dendrite tip decreased. The simulation results are in good agreement with the experimental findings, providing further evidence of the refining effect of the B element and the reliable predictive capability of the phase field model.
基金Project(50875199) supported by the National Natural Science Foundation of ChinaProject supported by State Key Laboratory of Advanced Welding and Joining,China
文摘To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).
基金Project (2009GJC20040) supported by the Scientist and Technician Serve the Enterprise,MOST,China
文摘The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated.
基金Project(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning electron microscopy and X-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. As a result, influences of filler metals on microstructures and mechanical properties of electron beam welded titanium-stainless steel joints were discussed. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. For each type of the filler metal, the type of solid solution and interfacial intermetallics depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti+Ni3Ti+NiTi2, TiFe, and Cu2Ti+CuTi+CuTi2 in the joints welded with Ni, V, and Cu filler metals, respectively. The tensile strengths of the joints were dependent on the hardness of the interfacial intermetallics. The joint welded with Ag filler metal had the highest tensile strength, which is about 310 MPa.
文摘Titanium alloy (Ti-Al-V alloy) substrate was brazed with stainless steel (STS304) using filler metal.At an optimized brazing condition,various filler metals were used.Microstructures were observed at each condition.Filler metals were titanium based 40Ti-20Zr-20Cu-20Ni,silver based Ag 5Pd,and nickel based Ni-7Cr-3.1B-4.5Si-3Fe-0.06C (BNi2) and Ni-14Cr-10P-0.06C (BNi7).To select a good filler metal for brazing process,wetting test was performed at 880-1050 °C.It was not brazed using silver based filler metals,but at the conditions using titanium and nickel based filler metals had brazed zone between titanium alloy and stainless steel.However,titanium alloy was eroded during brazing using titanium based filler metals.Nickel based filler metal has a good brazed zone between titanium alloy and stainless steel among the filler metals.
文摘Melting temperature, spreadability, mechanical properties and the microstructures of joints brazed with silver-base filler metals including different amounts of Ga and/or In were studied respectively in this paper, and the results show that the melting temperature of the silver-base filler metals is decreased, spreadability of the silver-base filler metals is improved, and the microstructures of silver-base filh, r metals are refined obviously with the addition of Ga and/or In. Using copper and brass plates as base metal and brazing with flame method, the mechanical properties of the lap-joint and butt joint were also examined and analyzed respectively, and the results indicate that the fracture position of two kinds of brazed joints occurred on the base metal, except for the lap-joint of brass, which shows better mechanical properties of the joints brazed with the silver- based filler metals including Ga. For the lap-joint of brass, the tensile strength gradually increased with the increase of Ga content, while the addition of In has little effect on mechanical properties. It is also found that the best comprehensive properties of cadmium-free Ag-Cu-Zn filler metals are obtained when Ga content is about 3.0 wt. % and In content is between 1.5 wt. % and 2. 0 wt. %.
基金financially supported by the Foundation of Scientist and Technician Serving the Enterprise,the Ministry of Science and Technology of China (No.2009GJC20040)
文摘Al-6.5Si-42Zn and Al-6.5Si-42Zn-0.09Sr filler metals were used for brazing 6061 aluminum alloy. Air cooling and water cooling were applied after brazing. Si phase morphologies in the brazing alloy and the brazed joints were investigated. It was found that zinc in the Al-Si filler metals could reduce the formation of eutectic Al-Si phase and lower the brazing temperature at about 520℃. Adding 0.09wt% Sr element into the Al-6.5Si-42Zn alloy caused a-Al phase refinement and transformed acicular Si phase into the finely fiber-like. After water cooling, Zn element dissolved into the Al-Si eutectic area, and η-Zn phase disappeared in the brazed joints. Tensile strength testing results showed that the Sr-modified filler metal could enhance the strength of the brazed joints by 13% than Al-12Si, while water-cooling further improved the strength at 144 MPa.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0305700)
文摘The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.
文摘With BrazeTec BlueBraze the manufacturers in HVACR industry have an alternative filler metal with 10 weight-% less silver but same brazing temperatures. The performance of these new alloys has been evaluated in several tests. The evaluation included wetting investigations, metallographic examinations, joint strength at different temperatures and pulsation and corrosion resistance. The results of these tests will be presented in this paper.
文摘In this paper, nine new filler metals contained Sn and Ga based on Al 11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change the structure of intermetallic compound formed in the joint during brazing, and enhance the strength of joint. But the detail mechanism need further research.
基金financially supported by the National Natural Science Foundation of China(No.51674060)Collaborative Innovation Center of Major Machine Manufacturing in Liaoning province,China。
文摘TiAl alloy and 316L stainless steel were vacuum-brazed with Zr−50.0Cu−7.1Ni−7.1Al(at.%)amorphous filler metal.The influence of brazing time and temperature on the interfacial microstructure and shear strength of the resultant joints was investigated.The brazed seam consisted of three layers,including two diffusion layers and one residual filler metal layer.The typical microstructure of brazed TiAl alloy/316L stainless steel joint was TiAl alloy substrate/α2-(Ti3Al)/AlCuTi/residual filler metal/Cu9Zr11+Fe23Zr6/Laves-Fe2Zr/α-(Fe,Cr)/316L stainless steel substrate.Discontinuous brittle Fe2Zr layer formed near the interface between the residual filler metal layer andα-(Fe,Cr)layer.The maximum shear strength of brazed joints reached 129 MPa when brazed at 1020℃ for 10 min.The diffusion activation energies ofα2-(Ti3Al)andα-(Fe,Cr)phases were−195.769 and−112.420 kJ/mol,respectively,the diffusion constants for these two phases were 3.639×10^(−6) and 7.502×10^(−10)μm^(2)/s,respectively.Cracks initiated at Fe2Zr layer and propagated into the residual filler metal layer during the shear test.The Laves-Fe2Zr phase existing on the fracture surface suggested the brittle fracture mode of the brazed joints.
基金Project (2009GJC20040) supported by the Project of Scientist and Technician Serve the Enterprise, the Ministry of Science and Technology, China
文摘Using Zn-Al filler metal with Al content of 2%?22% (mass fraction) and improved CsF-AlF3 flux, wetting properties of Zn-Al filler metal on 3003 Al substrate were investigated. The mechanical property as well as the microstructure of the brazed joints was also studied. The results indicate that excellent joints can be produced by means of torch brazing when the Al content is less than 8%. The metallographic structure in the brazing seam is mainly composed of Al based solid solutions and Zn based solid solutions. The high hardness value of brazing seam of the 3003 aluminum alloy is higher than that of the base metal due to the effect of solid solution strengthening. The results also show that three microstructure zones could be found at the brazing interface; i.e., base metal, diffusing zone and interface zone. The distribution of the solid solution in the brazing seam is the main factor of the tensile strength rather than the diffusion zone width near the interface.
基金financially supported by the National Natural Science Foundation of China(No.51375233)
文摘Cerium and titanium were added to an A1-42Zn-5.5Si brazing alloy, and the subsequent microstructures of the brazing alloy and the 6061 AI alloy brazing seam were investigated. The microstructures of filler metals and brazed joints were characterized by scanning elec- tron microscopy and X-ray energy dispersion spectrometry. A new Ce-Ti phase formed around the silicon phase in the modified filler metal and this saturation phenomenon was analyzed. Interestingly, following brazing of the 6061 alloy, there is no evidence of the Ce--Ti phase in the brazing seam. Because of the mutual solubility of the brazing alloy and base metal, the quantity of the solvent increases, and the solute Ce and Ti atoms assume an undersaturated state.
文摘The effects of Cu, Si, Ni and RE elements ( RE = La and Ce ) on the melting temperature of AI-Si filler metals were studied by orthogonal design method. The wettability of the filler metals and the shear strength of 6063 aluminum alloy joints brazed with the different filler metals were measured. The results show that the copper doping content has the most obvious effect on liquidas temperature ( TL ) of the Al-Si filler metals and the effect of RE content on TL is the least. Adding suitable Cu and Si can improve the wettability of the Al-Si filler metals. The shear strength of 6063 aluminum alloy joints brazed with the filler metals SIO, S15 and S20, respectively, is better than that of the joints brazed with HL401 due to the improvement of microstructure. It can improve the shear strength of the joints by brazing with the Ni- or RE-doped Al-Si-Cu filler metals.
文摘The present work investigates the effect of filler metals and heat input on weld bead geometry and mechanical properties of alloy316 welded by using GTAW.ER309 L,ER316 L and ERNi Cr Mo-3 filler metals,are applied to study their effect on the weldment.Weld defects are examined using radiographic testing.The mechanical properties of welds are evaluated through uniaxial testing,hardness measuring,and bending test.The mechanical properties and cooling rate decrease with increasing heat input.Tensile strength,yield stress and percentage elongation of weldments using three fillers are determined.Best results are obtained using ERNi Cr Mo-3.Besides,weld nugget area,cooling time and solidification time increases with increasing heat input.Finally,applying bending test on weld samples,cracks,tearing and surface defects are not observed.
文摘The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.
文摘The objective of this study is to investigate the influence of adding tiny amount of mixed rare earth ( La, Ce) and Sr to Al-20Cu-SSi-2Ni filler metal, by analyzing the microstructure, wettability and mechanical properties of brazed joints. The results show that with the addition of mixed rare earth (La, Ce ) into Al-2OCu-SSi-2Ni alloy, the α-Al solid solution as well as CuAl2 ( Ni) intermetallic compound phase significantly reduced, while more Al-Si eutectic phase and AI-Si-Cu ternary eutectic phase were produced. And as mixed rare earth (La, Ce ) added in, the wettability of Al-2OCu-SSi-2Ni filler metal decreased, while the shear strength of the brazed joints increased. The addition of Minor Sr modificated Al-2OCu-SSi-2Ni filler metal, further reduced the CuAl2 ( Ni ) intermetallic compound phase, which was partially replaced Al-Si-Cu ternary eutectic phase. As a result, the tensile strength as well as the wettability of the filler metal was improved.
文摘Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature.
文摘The repair welding of UNS C95700manganese?aluminum bronze plates was done using different filler metals.Themicrostructure and mechanical properties of welds were studied.The main microstructural constituents wereα,βandκphases withdifferent morphologies.The addition of manganese decreased the percentage ofαphase in the microstructure of weldments from80%(Mn-free weld)to57%(12.5%Mn weld,mass fraction).The morphology ofκphase was lamellar in high nickel specimens andit was changed to a globular morphology for high manganese welds.Although the application of high manganese filler metal yieldedthe higher tensile and bending strengths of weldment compared with the weld using high nickel filler material,the optimummechanical properties of repair welds were obtained using a non-alloy filler material(ERCuAl-A2)for the underlay and highmanganese filler metal(ERCuMnNiAl)for filling passes.This weld presented an increase of39%in tensile strength compared withthe base metal,and no cracking was observed after bending test.