The hypoeutectic composite material composed of BCC phase and in situ precipitated Ti_(5)Si_(3) was prepared by adding Si into MoNbTaTiV high-entropy alloy.The obvious oriented in situ Ti_(5)Si_(3) phase formed eutect...The hypoeutectic composite material composed of BCC phase and in situ precipitated Ti_(5)Si_(3) was prepared by adding Si into MoNbTaTiV high-entropy alloy.The obvious oriented in situ Ti_(5)Si_(3) phase formed eutectic phase with BCC phase in the inter-dendritic area,which leads to excellent properties of the composite.The alloy exhibits ultra-high yield stress of 718 MPa at 1200℃ and obvious compression plasticity.After reaching the maximum strength,dynamic recovery(DRV)and dynamic recrystallization(DRX)caused soften phenomena.The DRX mechanism of the dual-phase eutectic structure is analyzed by electron backscatter diffraction.The DRX of the BCC phase conforms to the discontinuous DRX and continuous DRX mechanisms,while the Ti_(5)Si_(3) phase has a geometric DRX mechanism in addition to the above two mechanisms.The high performance of this composite has enough potential high-temperature applications such as nuclear and aero engine.展开更多
Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and str...Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).展开更多
Influence of severe cold deformation of titanium alloy Ti-1.5%A1-6.8%Mo-4.5%Fe in metastable β condition on the evolution of phase composition, microstructure, and tensile properties during continuous rapid heating w...Influence of severe cold deformation of titanium alloy Ti-1.5%A1-6.8%Mo-4.5%Fe in metastable β condition on the evolution of phase composition, microstructure, and tensile properties during continuous rapid heating was studied. As-deformed alloy was characterized by quasi-amorphous single-phase β condition with an abnormal temperature dependence of electric resistance that was normalized after 48 h exposure at room temperature as a result of isothermal ω phase precipitation. Subsequent rapid heating with a rate of 5 ℃/s caused recovery and recrystallization. Tensile properties of the alloy after different treatments were determined and discussed.展开更多
Mg-4Zn-1RE-0.5Zr (ZE41) Mg alloy is extensively used in the aerospace and automobile industries.In order to improve the applicability and performance,this alloy was engineered with in-situ Ti B2reinforcement to form T...Mg-4Zn-1RE-0.5Zr (ZE41) Mg alloy is extensively used in the aerospace and automobile industries.In order to improve the applicability and performance,this alloy was engineered with in-situ Ti B2reinforcement to form Ti B2/ZE41 composite.The high temperature deformation behavior and manufacturability of the newly developed Ti B2/ZE41 composite and the parent ZE41 Mg alloy were studied via establishing constitutive modeling of flow stress,deformation activation energy and processing map over a temperature range of 250℃-450℃ and strain rate range of 0.001 s-1-10 s-1.The predicted flow stress behavior of both materials were found to be well consistent with the experimental values.A significant improvement in activation energy was found in Ti B2/ZE41 composite (171.54 k J/mol) as compared to the ZE41 alloy (148.15 k J/mol) due to the dispersed strengthening of in-situ Ti B2particles.The processing maps were developed via dynamic material modeling.A wider workability domain and higher peak efficiency (45%) were observed in Ti B2/ZE41 composite as compared to ZE41 alloy (41%).The Dynamic recrystallization is found to be the dominating deformation mechanism for both materials;however,particle stimulated nucleation was found to be an additional mode of deformation in Ti B2/ZE41 composite.The twinning and stress induced cracks were observed in both the materials at low temperature and high strain rate.A narrow range of instability zone is found in the present Ti B2/ZE41 composite among the existing published literature on Mg based composites.The detailed microstructural characterization was carried out in both workability and instability domains to establish the governing deformation mechanisms.展开更多
In this work,the effects of Cr and Al contents on the preparation of SiC fiber-reinforced NiCrAl alloy matrix composites(SiCf/Ni-20Cr-5Al,SiCf/Ni-15Cr-5Al,SiCf/Ni-10Cr-5Al and SiCf/Ni-10Cr-3Al)were thoroughly discusse...In this work,the effects of Cr and Al contents on the preparation of SiC fiber-reinforced NiCrAl alloy matrix composites(SiCf/Ni-20Cr-5Al,SiCf/Ni-15Cr-5Al,SiCf/Ni-10Cr-5Al and SiCf/Ni-10Cr-3Al)were thoroughly discussed.The composites were prepared by vacuum hot pressing process using matrix-coated fibers.It was found that Cr solute atoms played a significant role in retarding the recrystallization of NiCrAl alloy matrix,and the Al elements in the form of γ'-Ni3Al phase had a suppression effect on the plastic flow of the matrix.Therefore,the reduction in Cr and Al contents was conductive to the recrystallization and plastic flow of NiCrAl alloy matrix,thereby reduced the size and number of micro-voids in the composite.In addition,this work provides some guidance for designing and manufacturing reasonable SiC fiber-reinforced Ni alloy matrix composites.展开更多
基金financially supported by the National Key Research and Development Program(No.2018YFB0703402)the National Natural Science Foundation of China(Nos.51790484,52074257)+2 种基金the Chinese Academy of Sciences(No.ZDBS-LY-JSC023)the Dongguan Innovative Research Team Program(No.2014607134)the Science and Technology on Transient Impact Laboratory(No.6142606192208).
文摘The hypoeutectic composite material composed of BCC phase and in situ precipitated Ti_(5)Si_(3) was prepared by adding Si into MoNbTaTiV high-entropy alloy.The obvious oriented in situ Ti_(5)Si_(3) phase formed eutectic phase with BCC phase in the inter-dendritic area,which leads to excellent properties of the composite.The alloy exhibits ultra-high yield stress of 718 MPa at 1200℃ and obvious compression plasticity.After reaching the maximum strength,dynamic recovery(DRV)and dynamic recrystallization(DRX)caused soften phenomena.The DRX mechanism of the dual-phase eutectic structure is analyzed by electron backscatter diffraction.The DRX of the BCC phase conforms to the discontinuous DRX and continuous DRX mechanisms,while the Ti_(5)Si_(3) phase has a geometric DRX mechanism in addition to the above two mechanisms.The high performance of this composite has enough potential high-temperature applications such as nuclear and aero engine.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(51421001)supported by the National Natural Science Foundation of ChinaProject(106112015CDJXY130002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).
文摘Influence of severe cold deformation of titanium alloy Ti-1.5%A1-6.8%Mo-4.5%Fe in metastable β condition on the evolution of phase composition, microstructure, and tensile properties during continuous rapid heating was studied. As-deformed alloy was characterized by quasi-amorphous single-phase β condition with an abnormal temperature dependence of electric resistance that was normalized after 48 h exposure at room temperature as a result of isothermal ω phase precipitation. Subsequent rapid heating with a rate of 5 ℃/s caused recovery and recrystallization. Tensile properties of the alloy after different treatments were determined and discussed.
基金Department of Science and Technology, India [grant number of DST/TDT/AMT/ 2017/211(G)] (MEE/18–19/412/DSTX/SUSH) for the financial support and FIST grant, Department of Science and Technology, India [grant number SR/FST/ET11–059/2012 (G)] for funding electron microscope facilitya part of Center of Excellence (Co E) in Applied Magnesium Research (A Vertical of Center for Materials and Manufacturing for Futuristic Mobility), IIT Madrasthe Ministry of Human Resource and Development for funding this CoE through grant number–SB20210992MEMHRD008517。
文摘Mg-4Zn-1RE-0.5Zr (ZE41) Mg alloy is extensively used in the aerospace and automobile industries.In order to improve the applicability and performance,this alloy was engineered with in-situ Ti B2reinforcement to form Ti B2/ZE41 composite.The high temperature deformation behavior and manufacturability of the newly developed Ti B2/ZE41 composite and the parent ZE41 Mg alloy were studied via establishing constitutive modeling of flow stress,deformation activation energy and processing map over a temperature range of 250℃-450℃ and strain rate range of 0.001 s-1-10 s-1.The predicted flow stress behavior of both materials were found to be well consistent with the experimental values.A significant improvement in activation energy was found in Ti B2/ZE41 composite (171.54 k J/mol) as compared to the ZE41 alloy (148.15 k J/mol) due to the dispersed strengthening of in-situ Ti B2particles.The processing maps were developed via dynamic material modeling.A wider workability domain and higher peak efficiency (45%) were observed in Ti B2/ZE41 composite as compared to ZE41 alloy (41%).The Dynamic recrystallization is found to be the dominating deformation mechanism for both materials;however,particle stimulated nucleation was found to be an additional mode of deformation in Ti B2/ZE41 composite.The twinning and stress induced cracks were observed in both the materials at low temperature and high strain rate.A narrow range of instability zone is found in the present Ti B2/ZE41 composite among the existing published literature on Mg based composites.The detailed microstructural characterization was carried out in both workability and instability domains to establish the governing deformation mechanisms.
基金financially supported by the National Natural Science Foundation of China(No.51371170)。
文摘In this work,the effects of Cr and Al contents on the preparation of SiC fiber-reinforced NiCrAl alloy matrix composites(SiCf/Ni-20Cr-5Al,SiCf/Ni-15Cr-5Al,SiCf/Ni-10Cr-5Al and SiCf/Ni-10Cr-3Al)were thoroughly discussed.The composites were prepared by vacuum hot pressing process using matrix-coated fibers.It was found that Cr solute atoms played a significant role in retarding the recrystallization of NiCrAl alloy matrix,and the Al elements in the form of γ'-Ni3Al phase had a suppression effect on the plastic flow of the matrix.Therefore,the reduction in Cr and Al contents was conductive to the recrystallization and plastic flow of NiCrAl alloy matrix,thereby reduced the size and number of micro-voids in the composite.In addition,this work provides some guidance for designing and manufacturing reasonable SiC fiber-reinforced Ni alloy matrix composites.