A rapidly solidified Al_(85)Y_4Nd_4Fe_7 (%, in nominal atomic fraction) alloy was prepared by melt spinning. As-quenched and as-annealed microstructures were studied by differential scanning calorimetry (DSC), X-ray d...A rapidly solidified Al_(85)Y_4Nd_4Fe_7 (%, in nominal atomic fraction) alloy was prepared by melt spinning. As-quenched and as-annealed microstructures were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Fully amorphous structure could be obtained in the rapidly solidified Al_(85)Y_4Nd_4Fe_7 alloy ribbons. The temperature of first crystallization exceeds 300 ℃. Crystallization of as-annealed Al_(85)Y_4Nd_4Fe_7 alloy is shown to occur in two stages: (1) primary crystallization of α-Al; (2) formation of Al_3Y, Al_(13)Fe_4 and unknown crystalline phases.展开更多
基金Project supported by the Education Bureau of Anhui Province (2000JL172)
文摘A rapidly solidified Al_(85)Y_4Nd_4Fe_7 (%, in nominal atomic fraction) alloy was prepared by melt spinning. As-quenched and as-annealed microstructures were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Fully amorphous structure could be obtained in the rapidly solidified Al_(85)Y_4Nd_4Fe_7 alloy ribbons. The temperature of first crystallization exceeds 300 ℃. Crystallization of as-annealed Al_(85)Y_4Nd_4Fe_7 alloy is shown to occur in two stages: (1) primary crystallization of α-Al; (2) formation of Al_3Y, Al_(13)Fe_4 and unknown crystalline phases.