期刊文献+
共找到3,651篇文章
< 1 2 183 >
每页显示 20 50 100
Microstructure and impact mechanical properties of multi-layer and multi-pass TIG welded joints of Al-Zn-Mg alloy plates 被引量:7
1
作者 Qing-wei GAO Feng-yuan SHU +1 位作者 Peng HE Wen-bo DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2496-2505,共10页
The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were ch... The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture. 展开更多
关键词 al-zn-mg alloy thick plates multi-layer TIG welding MICROSTRUCTURE impact mechanical property
下载PDF
Relationship between elements migration ofα-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al-Zn-Mg alloy 被引量:3
2
作者 Min Ao Yucheng Ji +4 位作者 Pan Yi Ni Li Li Wang Kui Xiao Chaofang Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期112-121,共10页
First principles calculations and scanning Kelvin probe force microscopy(SKPFM)were used to investigate the effect of elements migration ofα-AlFeMnSi phase on micro-galvanic corrosion behavior of Al-Zn-Mg alloy.The s... First principles calculations and scanning Kelvin probe force microscopy(SKPFM)were used to investigate the effect of elements migration ofα-AlFeMnSi phase on micro-galvanic corrosion behavior of Al-Zn-Mg alloy.The simulation results showed that the average work function difference between theα-AlFeMnSi phase and Al matrix decreased from 0.232 to 0.065 eV due to the synchronous migration of elements Fe-Mn-Si.Specifically,as the elements Fe-Si migration during the extrusion process,the average Volta potential difference detected by SKPFM between theα-AlFeMnSi phase and Al matrix dropped down to 432.383 mV from 648.370 mV.Thus,the elements migration reduced the micro-galvanic corrosion sensitivity of Al-Zn-Mg alloy.To reach the calculated low micro-galvanic tendency betweenα-AlFeMnSi phase and Al matrix,the diffusion of Mn should be promoted during extruding process. 展开更多
关键词 al-zn-mg alloy corrosion behavior α-AlFeMnSi phase first principles calculations
下载PDF
Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates 被引量:2
3
作者 Yuji Bai Zhixiu Wang +4 位作者 Bo Jiang Mengqi Li Cong Zhu Xiaotong Gu Hai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2212-2223,共12页
The tensile properties of 2297-T87 Al–Li alloy thick plates at different thickness position and in different direction were analyzed via tensile testing,optical microscopy(OM),X-ray diffraction(XRD),scanning electron... The tensile properties of 2297-T87 Al–Li alloy thick plates at different thickness position and in different direction were analyzed via tensile testing,optical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and transmission electron microscopy(TEM).Results indicated that the ultimate tensile strength(UTS)and yield strength(YS)of the alloy decreased firstly and then increased from the 1/8T position to the 1/2T position,whereas elongation to failure(Ef)decreased gradually such that its value along the rolling direction(RD)was higher than those along the transverse direction(TD)at the same thickness position.From the 1/8T position to the 3/8T position of the alloy,the UTS and YS along the TD were higher than those along the RD.At the 1/2T position of the alloy,the UTS,YS,and Ef along the RD were the highest,whereas those along the normal direction(ND)were the lowest.Microstructural observations further revealed that the anisotropy of tensile properties was related to grain morphology,crystal texture,second-phase particles,and Li atom segregation. 展开更多
关键词 2297 alloy thick plate tensile properties ANISOTROPY grain morphology second-phase particles
下载PDF
Ageing behavior of an Al-Zn-Mg-Cu alloy pre-stretched thick plate 被引量:12
4
作者 Zhihui Li Baiqing Xiong Yongan Zhang Baohong Zhu Feng Wang Hongwei Liu 《Journal of University of Science and Technology Beijing》 CSCD 2007年第3期246-250,共5页
The ageing behavior of a pre-stretched thick plate of Al-Zn-Mg-Cu alloy was systemically studied including one-step ageing, two-step ageing, and retrogression and reageing treatment (RRA). One-step ageing of the all... The ageing behavior of a pre-stretched thick plate of Al-Zn-Mg-Cu alloy was systemically studied including one-step ageing, two-step ageing, and retrogression and reageing treatment (RRA). One-step ageing of the alloy resulted in peak ultimate tensile strengths of 595 and 575 MPa after 22 and 6 h at 120 and 135°C, respectively. The strengthening phase in peak aged (T6 temper) alloy contained GP zones and the η′ phase predominantly. After two-step ageing, the electrical conductivity was increased markedly, but the pre-stretched thick plate sacrificed a great loss of strength. RRA treatment provided a method for maintaining the strength close to that obtained by T6 temper and for obtaining the high electrical conductivity close to that obtained by T7 temper; the ultimate tensile strength and electrical conductivity were 583 MPa and 21.0 MS/m, respectively. TEM analysis of T7 and RRA specimens revealed two types of precipitates that contributed to age strengthening i.e. the η′ and η phases. 展开更多
关键词 al-zn-mg-Cu alloy pre-stretched thick plate ageing tensile properties PRECIPITATION
下载PDF
Impact Damage Identification of Aluminum Alloy Reinforced Plate Based on GWO-ELM Algorithm
5
作者 Wei Li Benjian Zou +4 位作者 Yuxiang Luo Ning Yang Faye Zhang Mingshun Jiang Lei Jia 《Structural Durability & Health Monitoring》 EI 2023年第6期485-500,共16页
As a critical structure of aerospace equipment,aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system.In this study,a GWO-ELM algorithm-based impact d... As a critical structure of aerospace equipment,aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system.In this study,a GWO-ELM algorithm-based impact damage identification method is proposed for aluminum alloy stiffened panels to monitor and evaluate the damage condition of such stiffened panels of spacecraft.Firstly,together with numerical simulation,the experimental simulation to obtain the damage acoustic emission signals of aluminum alloy reinforced panels is performed,to establish the damage data.Subsequently,the amplitude-frequency characteristics of impact damage signals are extracted and put into an extreme learning machine(ELM)model to identify the impact location and damage degree,and the Gray Wolf Optimization(GWO)algorithm is employed to update the weight parameters of the model.Finally,experiments are conducted on the irregular aluminum alloy stiffened plate with the size of 2200 mm×500 mm×10 mm,the identification accuracy of impact position and damage degree is 98.90% and 99.55% in 68 test areas,respectively.Comparative experiments with ELM and backpropagation neural networks(BPNN)demonstrate that the impact damage identification of aluminum alloy stiffened plate based on GWO-ELM algorithm can serve as an effective way to monitor spacecraft structural damage. 展开更多
关键词 GWO-ELM aluminum alloy stiffened plate damage identification amplitude-frequency characteristic
下载PDF
Shear deformation and plate shape control of hot-rolled aluminium alloy thick plate prepared by asymmetric rolling process 被引量:10
6
作者 左玉波 付兴 +4 位作者 崔建忠 汤翔宇 毛路 李磊 朱庆丰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2220-2225,共6页
Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achie... Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achieved by adjusting the diameters of the upper roll and the bottom roll and was used to prepare hot-rolled thick plate of 5182 aluminium alloy. The shear deformation and plate shape control were experimentally studied. The experimental results show that asymmetrical rolling has a significant effect on metal deformation stream and can somehow refine microstructure and improve the uniformity of microstructure and properties. The asymmetrical rolling process can also reduce the rolling force. However, bending of rolling plate often happens during asymmetrical rolling process. The factors affecting the bending were discussed. 展开更多
关键词 asymmetric rolling shearing deformation 5182 aluminium alloy plate shape microstructure mechanical properties
下载PDF
Anisotropy of localized corrosion in 7050-T7451 Al alloy thick plate 被引量:4
7
作者 宋丰轩 张新明 +2 位作者 刘胜胆 韩念梅 李东锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2483-2490,共8页
The corrosion anisotropy of 7050-T7451 A1 alloy thick plate in NaCI solution was investigated by immersion tests, slow strain rate testing (SSRT) technique, potentiodynamic and anode polarization measurements, optic... The corrosion anisotropy of 7050-T7451 A1 alloy thick plate in NaCI solution was investigated by immersion tests, slow strain rate testing (SSRT) technique, potentiodynamic and anode polarization measurements, optical microscropy (OM) and scanning electron microscopy (SEM) observations. The results show that the thick plate exhibits severe corrosion anisotropy due to the microstructure anisotropy. The observations of immersion surfaces together with the analysis of polarization curves reveal that the differences of the corrosion morphologies on various sections in this material are mainly related to the area fraction of the remnant second phase, and higher area fraction displays worst corrosion resistance. The stress corrosion cracking (SCC) susceptibility of different directions relative to the rolling direction is assessed by SSRT technique, ranked in the order: S direction 〉 L direction 〉 T direction. The result show that the smaller the grain aspect ratio, the better the corrosion resistance to SCC. 展开更多
关键词 7050-T7451 A1 alloy thick plate microstructure corrosion anisotropy
下载PDF
Experiments and modeling of double-peak precipitation hardening and strengthening mechanisms in Al-Zn-Mg alloy 被引量:3
8
作者 聂小武 张利军 杜勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2138-2144,共7页
The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatur... The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys. 展开更多
关键词 al-zn-mg alloy double-peak precipitation precipitation hardening MODELLING mechanical properties strengthening mechanisms
下载PDF
Influence of dent on residual ultimate strength of 2024-T3 aluminum alloy plate under axial compression 被引量:2
9
作者 李志刚 张明义 +5 位作者 刘富 马春生 张金换 胡忠民 张嘉振 赵亚男 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3084-3094,共11页
Drop-weight impact tests were conducted on 2024-T3 aluminum plates with five types of impactors, and then the effects of the dent on the residual ultimate strength of the 2024-T3 specimens were investigated through ax... Drop-weight impact tests were conducted on 2024-T3 aluminum plates with five types of impactors, and then the effects of the dent on the residual ultimate strength of the 2024-T3 specimens were investigated through axial compression tests. Results indicate that with increase in dent depth, the five types of dents affect the ultimate strength of the plate in different trends. Nevertheless, other than the plate global deflection caused by impacting, the dent itself has unremarkable effect on the ultimate strength. The mathematical expressions are derived regarding the relationship between impact energy factor and the dent depth factor as well as the compressive ultimate strength reduction rate and the dent depth factor. 展开更多
关键词 aluminum alloy plate IMPACTOR DENT residual ultimate strength compression
下载PDF
Reverse deep drawability of 5A06 aluminum alloy plate at elevated temperatures 被引量:3
10
作者 张志超 徐永超 苑世剑 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1538-1545,共8页
In order to avoid the occurrence of fracture at room temperature in reverse deep drawing of aluminum alloy plate, the warm reverse deep drawing method was proposed. The experiments were conducted at room temperature,... In order to avoid the occurrence of fracture at room temperature in reverse deep drawing of aluminum alloy plate, the warm reverse deep drawing method was proposed. The experiments were conducted at room temperature, 280 and 360 ℃ with a 4.5 mm thick 5A06 aluminum alloy plate. The effect of temperature, blank-holding force and gap on the fracture and wrinkle of the reverse deep drawing process was investigated. A fully coupled thermal-mechanical simulation was carried out to obtain the stress distribution through the commercial software of Abaqus/Explicit. The results show that the fracture is avoided at 280 ℃ since the bending-induced stress gradient in the transient area between the inside corner and the straight wall decreases from 505 MPa at RT to 72 MPa at 280 ° C. Although the fracture is avoided as the temperature increases, the wrinkle occurs at the outside die corner at temperature over 280 ° C, where the circumferential compressive stress becomes larger than that at the inside. As the temperature increases to 360 ℃, the fracture occurs due to the excessive softening, the tensile stress in the straight wall reaches rapidly to the tensile strength at the beginning of reverse deep drawing. When 1.5t (t=4.5 mm) blank holding gap is applied at 280 ℃, both the fracture and wrinkle can be avoided, and 420 mm deep cups are drawn successfully. 展开更多
关键词 5A06 aluminum alloy plate warm reverse deep drawing forming defect
下载PDF
Effect of flame rectification on corrosion property of Al-Zn-Mg alloy 被引量:1
11
作者 李帅 郭丹 董红刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期250-257,共8页
The corrosion resistance of Al?Zn?Mg alloy subjected to different times in flame rectification was investigated based on the exfoliation corrosion test. The results indicate that the flame rectification deteriorate... The corrosion resistance of Al?Zn?Mg alloy subjected to different times in flame rectification was investigated based on the exfoliation corrosion test. The results indicate that the flame rectification deteriorates the exfoliation corrosion resistance of Al?Zn?Mg alloy. The corrosion resistance of Al-Zn-Mg alloy is ranked in the following order: base metal〉two times〉three times〉one time of flame rectification. The exfoliation corrosion behavior was discussed based on the transformation of precipitates at grain boundaries and matrix. With increasing the number of times in flame rectification, the precipitate-free zones disappeared and the precipitates experienced dissolution and re-precipitation. The sample was seriously corroded after one time of flame rectification, because the precipitates at grain boundaries are more continuous than those in other samples. 展开更多
关键词 al-zn-mg alloy flame rectification exfoliation corrosion re-precipitation
下载PDF
Surface quality, microstructure and mechanical properties of Cu-Sn alloy plate prepared by two-phase zone continuous casting 被引量:1
12
作者 刘雪峰 罗继辉 王晓晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1901-1910,共10页
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate... Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved. 展开更多
关键词 Cu-Sn alloy plate two-phase zone continuous casting surface quality grains-covered grains microstructure mechanical property
下载PDF
Construction and solution of strain model along thickness of aluminum alloy plate under plastic deformation
13
作者 张舒原 廖凯 吴运新 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3381-3388,共8页
A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of str... A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy. 展开更多
关键词 isotropic linear hardening thick plate strain model plastic deformation aluminum alloy
下载PDF
Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al-Zn-Mg alloy 被引量:13
14
作者 K. S. GHOSH N. GAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1199-1209,共11页
Differential scanning calorimetric (DSC) study was carried out at different heating rates to examine the solid state reactions in a 7150 A1-Zn-Mg alloy in water-quenched (WQ) state, naturally and artificially aged... Differential scanning calorimetric (DSC) study was carried out at different heating rates to examine the solid state reactions in a 7150 A1-Zn-Mg alloy in water-quenched (WQ) state, naturally and artificially aged tempers. The exothermic and endothermic peaks of the thermograms indicating the solid state reaction sequence were identified. The shift of peak temperatures to higher temperatures with increasing heating rates suggests that the solid state reactions are thermally activated and kinetically controlled. The artificial aging behaviour of the alloy was assessed by measuring the variations of hardness with aging time. The fraction of transformation (Y), the rate of transformation (dY/dt), the transformation functionflY), and the kinetic parameters such as activation energy (Q) and frequency factor (k0) of all the solid state reactions in the alloy were determined by analyzing the DSC data, i.e. heat flow involved with the corresponding DSC peaks. It was found that the kinetic parameters of the solid state reactions are in good agreement with the published data. 展开更多
关键词 7150 al-zn-mg alloy DSC aging behaviour activation energy transformation function
下载PDF
Relationship between microstructure and mechanical properties of 5083 aluminum alloy thick plate 被引量:12
15
作者 Xin-wei SHE Xian-quan JIANG +4 位作者 Pu-quan WANG Bin-bin TANG Kang CHEN Yu-jie LIU Wei-nan CAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1780-1789,共10页
The microstructure and mechanical properties of 105 mm thick 5083 aluminum alloy hot rolled plate were investigated by metallurgical microscope, scanning electron microscope and tensile testing machine, and three majo... The microstructure and mechanical properties of 105 mm thick 5083 aluminum alloy hot rolled plate were investigated by metallurgical microscope, scanning electron microscope and tensile testing machine, and three major characteristic problems in mechanical properties inhomogeneity were explained. The results show that the mechanical properties of the rolled plate are inhomogeneous along the thickness direction. From the surface to the center, the strength shows an inverted "N" shape change and the elongation presents a semi "U" shape change. Several similar structural units composed of long fibrous grains(LFG) and short fibrous grains bands(SFGB) exist in a special layer(Layer 2) adjacent to the surface. This alternating layered distribution of LFG and SFGB is conducive to improving the plasticity by dispersing the plastic deformation concentrated on the boundary line(BL) between them. However, their different deformability will cause the alternation of additional stresses during the hot rolling, leading to the strength reduction. The closer the location to the center of the plate is, the more likely the recovery rather than the recrystallization occurs. This is the possible reason for the unnegligible difference in strength near the central region(Layer 4 and Layer 5). 展开更多
关键词 aluminum alloy thick plate mechanical properties INHOMOGENEITY fibrous grains dynamic recovery dynamic recrystallization
下载PDF
Ageing Effect on Hardness and Microstructure of Al-Zn-Mg Alloys 被引量:5
16
作者 M.Iqbal, M.A.Shaikh, M.Ahmad and K.A.Shoaib (Nuclear Physics Division, Pakistan Institute of Nuclear Science and Technology P.O.Nilore, Islamabad, Pakistan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期319-322,共4页
Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to ... Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to 168 h are presented. Both the alloys were found to show identical behaviour of hardness with ageing time. Alloy with higher Zn and Mg content had higher hardness than the alloy with lower solute content. There were three ranges of temperature in which different types of precipitates formed and affected the hardness. Some of the grain boundaries were found to migrate and precipitate free zone has been observed. 展开更多
关键词 ZN Ageing Effect on Hardness and Microstructure of al-zn-mg alloys AL
下载PDF
Effect of pre-deformation of rolling combined with stretching on stress corrosion of aluminum alloy 2519A plate 被引量:5
17
作者 ZHANG Xin-ming LIU Ling +3 位作者 YE Ling-ying LIU Jun LEI Zhao SONG Ji-chao 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期8-15,共8页
The effect of the pre-deformation of rolling combined with stretching on the stress corrosion cracking resistance of aluminum alloy 2519A was studied by means of the slow strain rate technique at 10-6 s-1. The tensile... The effect of the pre-deformation of rolling combined with stretching on the stress corrosion cracking resistance of aluminum alloy 2519A was studied by means of the slow strain rate technique at 10-6 s-1. The tensile strength and stress corrosion index of the alloy plate with 7% rolling plus 3% perpendicular stretching were 481 MPa and 0.0429, respectively, showing better mechanical property and stress corrosion cracking resistance than those with 4% rolling plus 3% parallel stretching or 7% rolling plus 3% parallel stretching, which is due to its finer and denser precipitates within the grains, discontinuous grain boundary precipitates, as well as more narrow precipitate-free zone width. Such microstructure is attributing to the denser and more homogeneously distributed dislocations which are produced by the pre-deformation. 展开更多
关键词 2519A aluminum alloy plate stress corrosion cracking PRE-DEFORMATION PRECIPITATES
下载PDF
Effect of large strain cross rolling on microstructure and properties of Al-Li alloy plates with high magnesium content 被引量:4
18
作者 Cai-he FAN Dong-sheng ZHENG +3 位作者 Xi-hong CHEN Jian-jun YANG Yong LIU Hui-zhong LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第2期263-269,共7页
Transmission electron microscopy(TEM),electron backscattered diffraction imaging(EBSD)and X-ray diffractometry were used to analyze the microstructure and texture characteristics of Al-9.8Mg-1.5Li-0.4Mn alloy cross-ro... Transmission electron microscopy(TEM),electron backscattered diffraction imaging(EBSD)and X-ray diffractometry were used to analyze the microstructure and texture characteristics of Al-9.8Mg-1.5Li-0.4Mn alloy cross-rolled and extruded plates,and the tensile properties and deep drawing performance were measured.The results show that the occurrence of dynamic recrystallization was promoted,the grains were refined and the preferred orientation of the recrystallized grains was improved by large strain cross rolling.Compared with CBA and CCB rolling methods,CBB rolling method significantly reduced the orientation density of the typical Brass texture{110}?112?in the extruded plates.The orientation densities of Copper texture{112}?111?and Brass texture{110}?112?on theβorientation line in the CBB rolled plates were the lowest,and there were no typical texture features in the plates.Meanwhile,better deep drawing could be gained in the CBB rolled plates,and the mechanical properties of the 0°,45°and 90°directions were basically the same.The tensile strength,yield strength and elongation at room temperature for the CBB rolled plates were 617 MPa,523 MPa and over 20.1%,respectively.The deviation of the mechanical properties at different directions was less than 3%. 展开更多
关键词 cross rolling Al-Li alloy plate MICROSTRUCTURE ANISOTROPY texture feature
下载PDF
A Study on Friction Stir Welding of 12mm Thick Aluminum Alloy Plates 被引量:2
19
作者 Deepati Anil Kumar Pankaj Biswas +2 位作者 Sujoy Tikader M. M. Mahapatra N. R. Mandal 《Journal of Marine Science and Application》 2013年第4期493-499,共7页
Most of the investigations regarding friction stir welding(FSW)of aluminum alloy plates have been limited to about 5 to 6mm thick plates.In prior work conducted the various aspects concerning the process parameters an... Most of the investigations regarding friction stir welding(FSW)of aluminum alloy plates have been limited to about 5 to 6mm thick plates.In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy.Two different simple-tomanufacture tool geometries were used.The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined.It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates,tool having trapezoidal pin geometry was suitable.Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min.At very low and high dwell time the ductility of welded joints are reduced significantly. 展开更多
关键词 friction STIR welding FSW parameters TOOL geometry trapezoidal TOOL TAPER cylindrical TOOL alloy plateS
下载PDF
STUDY ON THE RESPONSE TO LOW-VELOCITY IMPACT OF A COMPOSITE PLATE IMPROVED BY SHAPE MEMORY ALLOY 被引量:2
20
作者 Ying Wu YongdongWu Yuanxun Wang Weifang Zhong 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第4期357-362,共6页
Improvement from the pseudo-elastic effect of shape memory alloy (SMA) on the low-velocity impact (LVI) resistance of a composite plate is investigated by the finite element method (FEM). The stiffness matrix of... Improvement from the pseudo-elastic effect of shape memory alloy (SMA) on the low-velocity impact (LVI) resistance of a composite plate is investigated by the finite element method (FEM). The stiffness matrix of the dynamic finite element equation is established step by step and the martensite fraction is obtained at each time step. The direct Newmark integration method is employed in solving the dynamic finite element equation, while the impact contact force is determined using the modified Hertz's law. It is found that SMA can effectively improve the performance of a composite structure subjected to low-velocity impact. Numerical results show that the deflection of a SMA-hybrid composite plate has been reduced approximately by thirty percent when the volume fraction of the embedded SMA reaches 0.3. 展开更多
关键词 shape memory alloy composite plate low-velocity impact FEM
下载PDF
上一页 1 2 183 下一页 到第
使用帮助 返回顶部