The billets of Al-Zn-Mg-Cu-Zr and Al-Zn-Mg-Cu-Zr-0.5Er alloys were prepared by semi-continuous direct chill casting (DCC).The effects of trace Er on microstructure of Al-Zn-Mg-Cu-Zr alloy under as-cast and homogeniz...The billets of Al-Zn-Mg-Cu-Zr and Al-Zn-Mg-Cu-Zr-0.5Er alloys were prepared by semi-continuous direct chill casting (DCC).The effects of trace Er on microstructure of Al-Zn-Mg-Cu-Zr alloy under as-cast and homogenization conditions were studied.The results show that the grain morphology is large dendritic structure and the grain size increases obviously by the addition of 0.5% Er.Moreover,most of Er element in the alloy segregates at grain boundary during solidification,resulting in ternary Al8Cu4Er phase.After homogenization,most of the MgZn2 phase at grain boundary has dissolved back to Al matrix in the two alloys.In the Er-containing alloy,the dissolution temperature of Al8Cu4Er phase is about 575 °C.Therefore,the homogenization treatment cannot eliminate Al8Cu4Er phase validity.展开更多
The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show th...The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show that the true stress-true strain curves exhibit a peak stress at a critical strain, then the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The peak stresses depend on the temperature compensated strain rate, which can be represented by the Zener-Hollomon parameter Z in the hyperbolic-sine equation with hot deformation activation energy of 244.64 kJ/mol for 7056 alloy and 229.75 kJ/mol for 7150 alloy, respectively, while the peak stresses for the former are lower than those for the latter under the similar compression condition. The deformed microstructures consist of a great amount of precipitates within subgrains in the elongated grains at high Z value and exhibit well formed subgrains in the recrystallized grains at low Z value. The smaller subgrains and greater density of fine precipitates in 7150 alloy are responsible for the high peak stresses because of the substructural strengthening and precipitating hardening compared with 7056 alloy.展开更多
基金Project(50875031) supported by the National Natural Science Foundation of ChinaProject(2005CB623705) supported by National Basic Research Program of China
文摘The billets of Al-Zn-Mg-Cu-Zr and Al-Zn-Mg-Cu-Zr-0.5Er alloys were prepared by semi-continuous direct chill casting (DCC).The effects of trace Er on microstructure of Al-Zn-Mg-Cu-Zr alloy under as-cast and homogenization conditions were studied.The results show that the grain morphology is large dendritic structure and the grain size increases obviously by the addition of 0.5% Er.Moreover,most of Er element in the alloy segregates at grain boundary during solidification,resulting in ternary Al8Cu4Er phase.After homogenization,most of the MgZn2 phase at grain boundary has dissolved back to Al matrix in the two alloys.In the Er-containing alloy,the dissolution temperature of Al8Cu4Er phase is about 575 °C.Therefore,the homogenization treatment cannot eliminate Al8Cu4Er phase validity.
基金Projects (2008CB617608, 2009CB623704) supported by the National Basic Research Program of China
文摘The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show that the true stress-true strain curves exhibit a peak stress at a critical strain, then the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The peak stresses depend on the temperature compensated strain rate, which can be represented by the Zener-Hollomon parameter Z in the hyperbolic-sine equation with hot deformation activation energy of 244.64 kJ/mol for 7056 alloy and 229.75 kJ/mol for 7150 alloy, respectively, while the peak stresses for the former are lower than those for the latter under the similar compression condition. The deformed microstructures consist of a great amount of precipitates within subgrains in the elongated grains at high Z value and exhibit well formed subgrains in the recrystallized grains at low Z value. The smaller subgrains and greater density of fine precipitates in 7150 alloy are responsible for the high peak stresses because of the substructural strengthening and precipitating hardening compared with 7056 alloy.