As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi...As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.展开更多
Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N load...Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N loads respectively,and the effects of copper-coated MoS_(2) on the friction performances of the materials were studied.Results showed that the way of copper-coated on the surface of MoS_(2) could reinforce the bonding between MoS_(2) and matrix,and inhibited the formation of MoO_(2).Moreover,both materials formed a MoS_(2) lubricating film on the surface during the friction process.While the lubricating film formed after copper coating on MoS_(2) was thicker and had uneven morphology,it was more conducive to improving the friction performance of the material.Compared with conventional materials,the wear rate of copper-coated materials was reduced by one order of magnitude,and the friction coefficient was also reduced by 22.44% and 22.53%,respectively,when sliding under 4 N and 10 N loads.It shows that copper-coated MoS_(2)can improve friction properties of bronze-graphite-MoS_(2)self-lubricating materials furtherly.展开更多
In order to improve the tribological properties of ceramic composites, Al2O3/TiC-Al2O3/ TiC/CaF2 self-lubricating laminated ceramic composites were prepared by vacuum hot pressing sintering. Experiments were conducted...In order to improve the tribological properties of ceramic composites, Al2O3/TiC-Al2O3/ TiC/CaF2 self-lubricating laminated ceramic composites were prepared by vacuum hot pressing sintering. Experiments were conducted to get mechanical properties and the friction and wear properties were also measured with friction and wear tester. The worn surfaces were observed by scanning electron microscope (SEM) and energy dispersion spectrum (EDS). The wear resistance properties and the self-lubricating effect of ceramic composites were analyzed. Results show that the Al2O3/TiC-Al2O3/TiC/CaF2 self-lubricating laminated ceramic composites layers are well-defined with a higher bonding strength and the mechanical performances are uniform enough to overcome the anisotropy of weak laminated ceramic composites. In addition, the fracture toughness of Al2O3/TiC layers is also improved. Its friction coefficient and wear rates decrease with the increase of rotation speed and load. Al2O3/TiC-Al2O3/TiC/CaF2 self-lubricating laminated ceramic composites have good wear resistance because of the tribofilm formed by the CaF2 solid lubricants. The wear mechanisms of Al2O3/TiC/ CaF2 layers are abrasive wear and Al2O3/TiC layers are adhesive wear.展开更多
In this study, the friction performance of self-lubricating material with the counterpart steel ball-plate rubbing was investigated in vacuum conditions and the thermal distortion of the heat sink sample was tested. T...In this study, the friction performance of self-lubricating material with the counterpart steel ball-plate rubbing was investigated in vacuum conditions and the thermal distortion of the heat sink sample was tested. The analysis and test results show that the self-lubricating ma- terial has excellent anti-friction properties in high vacuum condition and can decrease the thermal stress and avoid damage to the PFCs during physical experiments.展开更多
Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infilt...Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.展开更多
In some adjusting mechanism,solid self-lubricating material that has hot-resistant and corrosion-resistant is need for adapting the work condition.In the present article,by the comparison study of mass loss and surfac...In some adjusting mechanism,solid self-lubricating material that has hot-resistant and corrosion-resistant is need for adapting the work condition.In the present article,by the comparison study of mass loss and surface topography after corrosion in acid solution and vapour of the four kinds of material,graphite,polymer,BN composite and cermet,it was found that,graphite has good corrosion-resistant to acid solution and vapour under 200℃,but the corrosion-resistant will become worse dramatically under 400℃,polymer has worse corrosion-resistant behavior above 200℃.By comparison,BN self-lubricating composite has better hot-resistant and corrosion-resistant,which can meet the demand of the work condition.展开更多
Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels,liquid fuel rockets,space infrared teles...Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels,liquid fuel rockets,space infrared telescopes,superconducting devices,and planetary exploration,which require solid lubrication for moving parts at low temperatures down to 4 K in cryogenic liquid,gaseous,or vacuum environments.Herein,the research progress regarding cryo-tribology is reviewed.The tribological properties and mechanisms of solid lubricants listed as carbon materials,molybdenum disulfide,polymers,and polymer-based composites with decreasing temperature are summarized.The friction coefficient increases with decreasing temperature induced by thermally activated processes.The mechanism of transfer film formation should be considered as a significant way to enhance the tribological properties of solid lubricants.In addition,applications of solid lubrication on moving parts under cryogenic conditions,such as spherical plain bearings and roller bearings,are introduced.The technology for tribological testing of materials and bearings at cryogenic temperatures is summarized,where the environmental control,motion and loading realization,as well as friction and wear measurement together in a low-temperature environment,result in the difficulties and challenges of the low-temperature tribotester.In particular,novel technologies and tribotesters have been developed for tribotests and tribological studies of solid lubricants,spherical plain bearings,and roller bearings,overcoming limitations regarding cooling in vacuum and resolution of friction measurement,among others,and concentrating on in-situ observation of friction interface.These not only promote a deep understanding of friction and wear mechanism at low temperatures,but also provide insights into the performance of moving parts or components in cryogenic applications.展开更多
Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) amorphous coatings were prepared using cold gas kinetic spray technology.The results show that Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) amorphous coatings are achieved with the porosit...Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) amorphous coatings were prepared using cold gas kinetic spray technology.The results show that Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) amorphous coatings are achieved with the porosity about 3.2%,thickness about 893 μm,the amount of amorphous phase about 82.5%,the hardness about 300 HV0.2.The corrosion potential and anti-corrosion life of 7075 T6 alloy aluminum are about-0.78 V and 72 h,respectively.The electrochemical analysis and neutral salt spray are about-0.69 V corrosion potential and 274 h anti-corrosion life for amorphous Al-based coatings,respectively.Therefore,the life of the Albased amorphous coatings is about 3.8 times that of 7075 T6 aluminum alloy.Besides,the failure mechanism was analyzed using TEM in this investigation.In a word,Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) coatings keep dense structure,high amorphous content,favorable amorphous phase stabilizing ability and longer anticorrosion life.That is,Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) coatings have better comprehensive properties.Therefore,these findings indicate that the present Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) amorphous coatings prepared using cold gas kinetic spray technique can protect aluminum alloy very well and they can be considered to be used in aviation field.展开更多
Based on the functionally graded materials (FGMs) design concept, the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical prop- erties and lubrication p...Based on the functionally graded materials (FGMs) design concept, the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical prop- erties and lubrication performance of the cermet. The effects of the layer number and thickness of graded structure on residual stresses in the gradient composites were investigated by finite element method (FEM). From the FEM analyses, the optimal gradient structure design was obtained correspond- ing to the following parameters: the number of graded layers n = 2 and the thickness of graded structure t = I ram. According to the optimum design, a graded graphite/cermets self-lubricating material with two layers was fabricated by a typical powder metallurgy technique. Compared with the homogenous graphite/cermets composite, the surface hardness and indentation fracture toughness of graded compos- ite were increased by approximately 15.9% and 6.3%, respectively. The results of X-ray diffraction (XRD) stress measurement identified the existence of residual compressive stress on the surface of graded com- posite. Additionally, the friction and wear tests revealed that the wear resistance of the graphite/cermets self-lubricating composite was improved significantly via the graded structural design, whereas the coefficient of friction changed slightly.展开更多
In recent years, a new 2D-layered material—black phosphorus(BP)—has been a rising star after the era of graphene owing to its high charge carrier mobility, tunable direct bandgap and unique in-plane anisotropic stru...In recent years, a new 2D-layered material—black phosphorus(BP)—has been a rising star after the era of graphene owing to its high charge carrier mobility, tunable direct bandgap and unique in-plane anisotropic structure. With the development of the synthesis and modification methods of BP, its extensive applications, e.g., transistors, batteries and optoelectronics have emerged. In order to explore its full potential, research into the tribological properties of BP 2D-layered materials such as lubrication additives and fillers in self-lubricating composite materials would be not only of high scientific value but also of practical significance. In this work, recent advances on the friction and lubrication properties of BP nanosheets made by our group, including the micro-friction properties, the lubrication properties of BP nanosheets as water-based and oil-based lubrication additives, and the friction and wear of BP/PVDF composites will be presented. Finally, the future challenges and opportunities in the use of BP materials as lubricants will be discussed.展开更多
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+4 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’ innovation and entrepreneurship training program (202310058088)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.
文摘Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N loads respectively,and the effects of copper-coated MoS_(2) on the friction performances of the materials were studied.Results showed that the way of copper-coated on the surface of MoS_(2) could reinforce the bonding between MoS_(2) and matrix,and inhibited the formation of MoO_(2).Moreover,both materials formed a MoS_(2) lubricating film on the surface during the friction process.While the lubricating film formed after copper coating on MoS_(2) was thicker and had uneven morphology,it was more conducive to improving the friction performance of the material.Compared with conventional materials,the wear rate of copper-coated materials was reduced by one order of magnitude,and the friction coefficient was also reduced by 22.44% and 22.53%,respectively,when sliding under 4 N and 10 N loads.It shows that copper-coated MoS_(2)can improve friction properties of bronze-graphite-MoS_(2)self-lubricating materials furtherly.
基金Funded by the National Natural Science Foundation for Young Scholars of China(No.51005100)Higher Education Science and Technology Program of Shandong(No.J11LD14)Science and Technology Development Plan of Shandong(No.2012GGX10324)
文摘In order to improve the tribological properties of ceramic composites, Al2O3/TiC-Al2O3/ TiC/CaF2 self-lubricating laminated ceramic composites were prepared by vacuum hot pressing sintering. Experiments were conducted to get mechanical properties and the friction and wear properties were also measured with friction and wear tester. The worn surfaces were observed by scanning electron microscope (SEM) and energy dispersion spectrum (EDS). The wear resistance properties and the self-lubricating effect of ceramic composites were analyzed. Results show that the Al2O3/TiC-Al2O3/TiC/CaF2 self-lubricating laminated ceramic composites layers are well-defined with a higher bonding strength and the mechanical performances are uniform enough to overcome the anisotropy of weak laminated ceramic composites. In addition, the fracture toughness of Al2O3/TiC layers is also improved. Its friction coefficient and wear rates decrease with the increase of rotation speed and load. Al2O3/TiC-Al2O3/TiC/CaF2 self-lubricating laminated ceramic composites have good wear resistance because of the tribofilm formed by the CaF2 solid lubricants. The wear mechanisms of Al2O3/TiC/ CaF2 layers are abrasive wear and Al2O3/TiC layers are adhesive wear.
文摘In this study, the friction performance of self-lubricating material with the counterpart steel ball-plate rubbing was investigated in vacuum conditions and the thermal distortion of the heat sink sample was tested. The analysis and test results show that the self-lubricating ma- terial has excellent anti-friction properties in high vacuum condition and can decrease the thermal stress and avoid damage to the PFCs during physical experiments.
基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject(2011M500127)supported by the China Postdoctoral Science Foundation+2 种基金Projects(51102089,50802115)supported by the National Natural Science Foundation of ChinaProjects(12JJ4046,12JJ9014)supported by the Natural Science Foundation of Hunan Province,ChinaProject(74341015817)supported by the Post-doctoral Fund of Central South University,China
文摘Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.
文摘In some adjusting mechanism,solid self-lubricating material that has hot-resistant and corrosion-resistant is need for adapting the work condition.In the present article,by the comparison study of mass loss and surface topography after corrosion in acid solution and vapour of the four kinds of material,graphite,polymer,BN composite and cermet,it was found that,graphite has good corrosion-resistant to acid solution and vapour under 200℃,but the corrosion-resistant will become worse dramatically under 400℃,polymer has worse corrosion-resistant behavior above 200℃.By comparison,BN self-lubricating composite has better hot-resistant and corrosion-resistant,which can meet the demand of the work condition.
基金supported by National Natural Science Foundation of China(Grant Nos.51935006,52225502)。
文摘Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels,liquid fuel rockets,space infrared telescopes,superconducting devices,and planetary exploration,which require solid lubrication for moving parts at low temperatures down to 4 K in cryogenic liquid,gaseous,or vacuum environments.Herein,the research progress regarding cryo-tribology is reviewed.The tribological properties and mechanisms of solid lubricants listed as carbon materials,molybdenum disulfide,polymers,and polymer-based composites with decreasing temperature are summarized.The friction coefficient increases with decreasing temperature induced by thermally activated processes.The mechanism of transfer film formation should be considered as a significant way to enhance the tribological properties of solid lubricants.In addition,applications of solid lubrication on moving parts under cryogenic conditions,such as spherical plain bearings and roller bearings,are introduced.The technology for tribological testing of materials and bearings at cryogenic temperatures is summarized,where the environmental control,motion and loading realization,as well as friction and wear measurement together in a low-temperature environment,result in the difficulties and challenges of the low-temperature tribotester.In particular,novel technologies and tribotesters have been developed for tribotests and tribological studies of solid lubricants,spherical plain bearings,and roller bearings,overcoming limitations regarding cooling in vacuum and resolution of friction measurement,among others,and concentrating on in-situ observation of friction interface.These not only promote a deep understanding of friction and wear mechanism at low temperatures,but also provide insights into the performance of moving parts or components in cryogenic applications.
基金Project supported by the AVIC Unite Fund(KZ041605114)Civil Aircraft(MJ-2016-F-16)。
文摘Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) amorphous coatings were prepared using cold gas kinetic spray technology.The results show that Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) amorphous coatings are achieved with the porosity about 3.2%,thickness about 893 μm,the amount of amorphous phase about 82.5%,the hardness about 300 HV0.2.The corrosion potential and anti-corrosion life of 7075 T6 alloy aluminum are about-0.78 V and 72 h,respectively.The electrochemical analysis and neutral salt spray are about-0.69 V corrosion potential and 274 h anti-corrosion life for amorphous Al-based coatings,respectively.Therefore,the life of the Albased amorphous coatings is about 3.8 times that of 7075 T6 aluminum alloy.Besides,the failure mechanism was analyzed using TEM in this investigation.In a word,Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) coatings keep dense structure,high amorphous content,favorable amorphous phase stabilizing ability and longer anticorrosion life.That is,Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) coatings have better comprehensive properties.Therefore,these findings indicate that the present Al_(86)Ni_(8)Co_(1)La_(1)Y_(2)Gd_(2) amorphous coatings prepared using cold gas kinetic spray technique can protect aluminum alloy very well and they can be considered to be used in aviation field.
基金financially supported by the Nation Natural Science Foundation of China (Grant No.51575368)
文摘Based on the functionally graded materials (FGMs) design concept, the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical prop- erties and lubrication performance of the cermet. The effects of the layer number and thickness of graded structure on residual stresses in the gradient composites were investigated by finite element method (FEM). From the FEM analyses, the optimal gradient structure design was obtained correspond- ing to the following parameters: the number of graded layers n = 2 and the thickness of graded structure t = I ram. According to the optimum design, a graded graphite/cermets self-lubricating material with two layers was fabricated by a typical powder metallurgy technique. Compared with the homogenous graphite/cermets composite, the surface hardness and indentation fracture toughness of graded compos- ite were increased by approximately 15.9% and 6.3%, respectively. The results of X-ray diffraction (XRD) stress measurement identified the existence of residual compressive stress on the surface of graded com- posite. Additionally, the friction and wear tests revealed that the wear resistance of the graphite/cermets self-lubricating composite was improved significantly via the graded structural design, whereas the coefficient of friction changed slightly.
基金support of the National Natural Science Foundation of China(Grant Nos.51527901,51335005,51475256,and 51605249)
文摘In recent years, a new 2D-layered material—black phosphorus(BP)—has been a rising star after the era of graphene owing to its high charge carrier mobility, tunable direct bandgap and unique in-plane anisotropic structure. With the development of the synthesis and modification methods of BP, its extensive applications, e.g., transistors, batteries and optoelectronics have emerged. In order to explore its full potential, research into the tribological properties of BP 2D-layered materials such as lubrication additives and fillers in self-lubricating composite materials would be not only of high scientific value but also of practical significance. In this work, recent advances on the friction and lubrication properties of BP nanosheets made by our group, including the micro-friction properties, the lubrication properties of BP nanosheets as water-based and oil-based lubrication additives, and the friction and wear of BP/PVDF composites will be presented. Finally, the future challenges and opportunities in the use of BP materials as lubricants will be discussed.