High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase co...High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.展开更多
Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (...Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurements. XRD studies show that the Al-doped LiVPO4F has the same triclinic structure (space group p-↑1 ) as the undoped LiVPO4F. The SEM images exhibit that the particle size of Al-doped LiVPO4F is smaller than that of the undoped LiVPO4F and that the smallest particle size is only about 1 μm. The Al-doped LiVPO4F was evaluated as a cathode material for secondary lithium batteries,and exhibited an improved reversibility and cycleability,which may be attributed to the addition of Al^3+ ion by stabilizing the triclinic structure.展开更多
Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(X...Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),N2 absorption-desorption,ultraviolet visible light spectroscopy(UV-Vis) and electrochemical spectroscopy.The results show that the mesoporous structure of the product with ethanol is composed of anatase laced crystal walls with amorphous grain boundaries formed gradually by degradation.Compared with those without ethanol,these samples possess larger crystallite size since ethanol decreases the pore size at higher temperature.With the increase of ethanol amount,however,the crystallite size will grow.The amorphous grain boundaries in the mesoporous material,with a large impedance and low incidental cyclic potential,are difficult to effectively degrade and the phase transformation temperature is changed from 500 to 550℃.The growth rate of Al-TiO2 crystallites that obeys the quadratic polynomial equation may be controlled.展开更多
Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize th...Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the effect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP (O-ICP)'s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP (CI-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP's treatment, while the work function after Cl-ICP's treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more effective than CI-ICP for enhancing the work function of AZO films, which is well consistent with KP results.展开更多
文摘High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.
文摘Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurements. XRD studies show that the Al-doped LiVPO4F has the same triclinic structure (space group p-↑1 ) as the undoped LiVPO4F. The SEM images exhibit that the particle size of Al-doped LiVPO4F is smaller than that of the undoped LiVPO4F and that the smallest particle size is only about 1 μm. The Al-doped LiVPO4F was evaluated as a cathode material for secondary lithium batteries,and exhibited an improved reversibility and cycleability,which may be attributed to the addition of Al^3+ ion by stabilizing the triclinic structure.
基金Supported by the National Natural Science Foundation of China (21061006) the Research of Natural Science and Technology Foundation of Guizhou Province ([2010]2006) the Graduate Scientific Innovation Project of Education Department of Guangxi Autonomous Region (1059330901009)
文摘Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),N2 absorption-desorption,ultraviolet visible light spectroscopy(UV-Vis) and electrochemical spectroscopy.The results show that the mesoporous structure of the product with ethanol is composed of anatase laced crystal walls with amorphous grain boundaries formed gradually by degradation.Compared with those without ethanol,these samples possess larger crystallite size since ethanol decreases the pore size at higher temperature.With the increase of ethanol amount,however,the crystallite size will grow.The amorphous grain boundaries in the mesoporous material,with a large impedance and low incidental cyclic potential,are difficult to effectively degrade and the phase transformation temperature is changed from 500 to 550℃.The growth rate of Al-TiO2 crystallites that obeys the quadratic polynomial equation may be controlled.
基金supported by National Natural Science Foundation of China(Nos.1100502151177017 and 11175049)+1 种基金the Fudan University Excellent Doctoral Research Program(985 Project) the Ph.D Programs Foundation of Ministry of Education of China(No.20120071110031)
文摘Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the effect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP (O-ICP)'s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP (CI-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP's treatment, while the work function after Cl-ICP's treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more effective than CI-ICP for enhancing the work function of AZO films, which is well consistent with KP results.