Effect of annealing temperature and time on the microstructure and photoluminescence(PL)properties of Al doped ZnO thin films deposited on Si(100)substrates by sol-gel method was investigated.An X-ray diffraction(XRD)...Effect of annealing temperature and time on the microstructure and photoluminescence(PL)properties of Al doped ZnO thin films deposited on Si(100)substrates by sol-gel method was investigated.An X-ray diffraction(XRD)was used to analyze the structural properties of the thin films.All the thin films have a preferential c-axis orientation,which are enhances in the annealing process.It is found from the PL measurement that near band edge(NBE)emission and deep-level(DL)emissions are observed in as-grown ZnO∶Al thin films.However,the intensity of DLE is much smaller than that of NBE.Enhancement of NBE is clearly observed after thermal annealing in air and the intensity of NBE increases with annealing temperature.Results also show that the PL spectrum is dependent not only on the processing temperature but also on the processing time.The DLE related defects can not be removed by annealing,and on the contrary,the annealing conditions actually favor their formation.展开更多
Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Co...Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Consequently,we comparatively studied the doped thin films on the basis of their structural,morphological,electrical,and optical properties for optoelectronic applications.Both thin films exhibited excellent optical properties with more than 85%transmission in the visible range.The GZO thin film had better crystallinity and smoother surface morphology than the AZO thin film.The conductivity of the GZO thin film was improved compared to that of the AZO thin film:the resistivity decreased from 1.01×10^-3 to 3.5×10^-4 Ω cm,which was mostly due to the increase of the carrier concentration from 6.5×10^20 to 1.46×10^21cm^-3.These results revealed that the GZO thin film had higher quality than the AZO thin film with the same doping concentration for optoelectronic applications.展开更多
Zinc Oxide (ZnO) and Aluminium doped ZnO (AZO) thin films were deposited on soda lime glass by Metal Organic Chemical Vapour deposition technique (MOCVD), using prepared compound mixtures of Zinc Acetate di-hydrate (Z...Zinc Oxide (ZnO) and Aluminium doped ZnO (AZO) thin films were deposited on soda lime glass by Metal Organic Chemical Vapour deposition technique (MOCVD), using prepared compound mixtures of Zinc Acetate di-hydrate (Zn(CH3COO)2⋅2H2O;ZAD) and Aluminium Acetyl-Acetonate (Al(C5H702)3;AAA) precursors at a temperature of 420°C. Effects of the varying mole percent concentrations of AAA precursor additives on the Al dopant concentrations in ZnO were systematically studied. The observations were made via investigations carried out on the morphological, optical, electrical and compositional properties of the deposited thin films. The thin films morphology was found to be strongly dependent on the varying concentration of AAA in the precursor mixtures. The average optical transmittance of the thin films in the uv-visible region was over 85% except 5 mol.% Al. While the energy band gaps were found to be in range of 3.27 - 3.36 eV. There is a blue-shift of the energy band edge observed between 0 and 5 mol.% AAA, which may be due to Burstein-Moss’ band gap widening effect and an opposing band gap renormalization effect at 10 mol.% AAA along with an extra band gap stabilization effect (Roth’s effect) at 15 mol.% AAA in rather quasi-sinusoidal or anomalous behaviour. The optical transmittance and electrical conductivity of ZnO were enhanced with addition of Al dopants. The RBS confirm the presence of Al, Zn and O, and evidence that Al dopants were successfully incorporated into the ZnO.展开更多
Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and ...Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω-1∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.展开更多
In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550...In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.展开更多
Al-doped ZnO(AZO) is considered as an alternative to transparent conductive oxide materials.Patterning and achieving a stable surface are important challenges in the development and optimization of dry etching process...Al-doped ZnO(AZO) is considered as an alternative to transparent conductive oxide materials.Patterning and achieving a stable surface are important challenges in the development and optimization of dry etching processes, which must be overcome for the application of AZO in various devices. Therefore, in this study, the etch rate and surface properties of an AZO thin film after plasma etching using the adaptive coupled plasma system were investigated. The fastest etch rate was achieved with a CF_(4)/Ar ratio of 50:50 sccm. Regardless of the ratio of CF_(4) to Ar,the transmittance of the film in the visible region exceeded 80%. X-ray photoelectron spectroscopy analysis of the AZO thin film confirmed that metal-F bonding persists on the surface after plasma etching. It was also shown that F eliminates O vacancies. Consequently, the work function and bandgap energy increased as the ratio of CF-4 increased. This study not only provides information on the effect of plasma on AZO thin film, but identifies the cause of changes in the device characteristics during device fabrication.展开更多
Metal oxide semiconductors(MOSs) are ideal sensing materials for detecting volatile organic compounds due to their low cost, diversity, high stability, and ease of production. However, it remains a grand challenge to ...Metal oxide semiconductors(MOSs) are ideal sensing materials for detecting volatile organic compounds due to their low cost, diversity, high stability, and ease of production. However, it remains a grand challenge to develop the MOSs-based gas sensors for sensing isopropanol with desired performance via a simple, effective,and controllable method. Herein, we reported the preparation of the Al-doped Zn O(AZO)/WO_(3) heterostructure films by directly depositing the AZO coating onto the WO_(3) coating using a strategy of magnetron sputtering. The AZO/WO_(3) heterostructure films were constructed by numbers of irregular nanoparticles that were interconnected with each other. The AZO/WO_(3) heterostructure films-based gas sensors exhibited excellent isopropanolsensing performance with high response, promising selectivity, low detection limit, fast response rate, wide detection range, and ideal reproducibility. The promising isopropanol-sensing performance of the AZO/WO_(3) heterostructure films arises mainly from their high uniformity, unique microstructures with high surface roughness,and the construction of the heterostructure between the AZO and WO_(3) coatings. This work provides a versatile approach to prepare the MOSs-based heterostructure films for assembling the gas sensors.展开更多
ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The p...ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The properties are characterized by X-ray diffraction,atomic force microscopy and transmission spectra.The parallel oriented ZnO films with mixed orientation for (100) and (110) planes are achieved on glass at the substrate temperature of 200℃ and the source temperature of 280℃,and a qualitative explanation is given for the forming of the mixed orientation.AFM images show that the surface is somewhat rough for the parallel oriented ZnO films.The transmission spectrum exhibits a high transmittance of about 85% in the visible region and shows an optical band gap about 3.25eV at room temperature.展开更多
Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate o...Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm-3 to 2.6 × 1019 cm-3. The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.展开更多
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface...Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.展开更多
The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two import...The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two important growth parameters,i, e. temperature and pressure, are investigated in detail. Due to the large lattice mismatch between the film and the substrate, ZnO nanocrystals are usually obtained. The growth behavior at the film-substrate interface is found to be strongly dependent on the growth temperature,while the growth pressure determines the shape of the nanostructures as they grow. It is difficult to obtain ZnO films that have good quality and a smooth surface simultaneously. Due to the smaller lattice mismatch,the critical thickness of ZnO on the Al2O3 (1120) surface is found to be much larger than that on the Al2O3 (0001) surface. ZnO/MgZnO quantum wells with graded well thicknesses are grown on the Al2O3 (1120) surfaces,and their optical properties are studied. The built-in electric field in the well layer, generated by the piezoelectric effect, is estimated to be 3 × 10^5 V/cm. It is found that growth at low temperatures and low pressures may facilitate the incorporation of acceptor impurities in ZnO.展开更多
Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties an...Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.展开更多
The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band ...The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida(RKKY) interaction.展开更多
Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns reveal...Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.展开更多
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precu...ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.展开更多
This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantatio...This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.展开更多
ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respect...ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respectively. The structure and composition of the ZnO films were studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The morphology of the samples was studied by scanning electron microscopy (SEM). Measured results show that ZnO films with hexagonal wurtzite structure were grown on Si(111) substrates when annealed in the two ambiences. The volatilization process of ZnO in the ammonia ambience at high temperature was discussed and the mechanism of the reaction was analyzed.展开更多
To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabr...To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.展开更多
基金Project supported by the National Natural Science Foundation of China(60390073)
文摘Effect of annealing temperature and time on the microstructure and photoluminescence(PL)properties of Al doped ZnO thin films deposited on Si(100)substrates by sol-gel method was investigated.An X-ray diffraction(XRD)was used to analyze the structural properties of the thin films.All the thin films have a preferential c-axis orientation,which are enhances in the annealing process.It is found from the PL measurement that near band edge(NBE)emission and deep-level(DL)emissions are observed in as-grown ZnO∶Al thin films.However,the intensity of DLE is much smaller than that of NBE.Enhancement of NBE is clearly observed after thermal annealing in air and the intensity of NBE increases with annealing temperature.Results also show that the PL spectrum is dependent not only on the processing temperature but also on the processing time.The DLE related defects can not be removed by annealing,and on the contrary,the annealing conditions actually favor their formation.
基金Funded by National Natural Science Foundation of China(NSFC)(Nos.21205127,61275114)
文摘Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Consequently,we comparatively studied the doped thin films on the basis of their structural,morphological,electrical,and optical properties for optoelectronic applications.Both thin films exhibited excellent optical properties with more than 85%transmission in the visible range.The GZO thin film had better crystallinity and smoother surface morphology than the AZO thin film.The conductivity of the GZO thin film was improved compared to that of the AZO thin film:the resistivity decreased from 1.01×10^-3 to 3.5×10^-4 Ω cm,which was mostly due to the increase of the carrier concentration from 6.5×10^20 to 1.46×10^21cm^-3.These results revealed that the GZO thin film had higher quality than the AZO thin film with the same doping concentration for optoelectronic applications.
文摘Zinc Oxide (ZnO) and Aluminium doped ZnO (AZO) thin films were deposited on soda lime glass by Metal Organic Chemical Vapour deposition technique (MOCVD), using prepared compound mixtures of Zinc Acetate di-hydrate (Zn(CH3COO)2⋅2H2O;ZAD) and Aluminium Acetyl-Acetonate (Al(C5H702)3;AAA) precursors at a temperature of 420°C. Effects of the varying mole percent concentrations of AAA precursor additives on the Al dopant concentrations in ZnO were systematically studied. The observations were made via investigations carried out on the morphological, optical, electrical and compositional properties of the deposited thin films. The thin films morphology was found to be strongly dependent on the varying concentration of AAA in the precursor mixtures. The average optical transmittance of the thin films in the uv-visible region was over 85% except 5 mol.% Al. While the energy band gaps were found to be in range of 3.27 - 3.36 eV. There is a blue-shift of the energy band edge observed between 0 and 5 mol.% AAA, which may be due to Burstein-Moss’ band gap widening effect and an opposing band gap renormalization effect at 10 mol.% AAA along with an extra band gap stabilization effect (Roth’s effect) at 15 mol.% AAA in rather quasi-sinusoidal or anomalous behaviour. The optical transmittance and electrical conductivity of ZnO were enhanced with addition of Al dopants. The RBS confirm the presence of Al, Zn and O, and evidence that Al dopants were successfully incorporated into the ZnO.
文摘Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω-1∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant Nos.61574168 and 61504163)
文摘In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.
基金supported by the National Research Foundation (NRF) of Korea (Nos. 2018R1D1A1B07051429 and 2020R1G1A1102692)。
文摘Al-doped ZnO(AZO) is considered as an alternative to transparent conductive oxide materials.Patterning and achieving a stable surface are important challenges in the development and optimization of dry etching processes, which must be overcome for the application of AZO in various devices. Therefore, in this study, the etch rate and surface properties of an AZO thin film after plasma etching using the adaptive coupled plasma system were investigated. The fastest etch rate was achieved with a CF_(4)/Ar ratio of 50:50 sccm. Regardless of the ratio of CF_(4) to Ar,the transmittance of the film in the visible region exceeded 80%. X-ray photoelectron spectroscopy analysis of the AZO thin film confirmed that metal-F bonding persists on the surface after plasma etching. It was also shown that F eliminates O vacancies. Consequently, the work function and bandgap energy increased as the ratio of CF-4 increased. This study not only provides information on the effect of plasma on AZO thin film, but identifies the cause of changes in the device characteristics during device fabrication.
基金financially supported by the National Natural Science Foundation of China (Nos.52172094 and 22209105)Shanghai Municipal Natural Science Foundation (No.21ZR1426700)the “Shuguang” Program of Shanghai Education Commission (No.19SG46)。
文摘Metal oxide semiconductors(MOSs) are ideal sensing materials for detecting volatile organic compounds due to their low cost, diversity, high stability, and ease of production. However, it remains a grand challenge to develop the MOSs-based gas sensors for sensing isopropanol with desired performance via a simple, effective,and controllable method. Herein, we reported the preparation of the Al-doped Zn O(AZO)/WO_(3) heterostructure films by directly depositing the AZO coating onto the WO_(3) coating using a strategy of magnetron sputtering. The AZO/WO_(3) heterostructure films were constructed by numbers of irregular nanoparticles that were interconnected with each other. The AZO/WO_(3) heterostructure films-based gas sensors exhibited excellent isopropanolsensing performance with high response, promising selectivity, low detection limit, fast response rate, wide detection range, and ideal reproducibility. The promising isopropanol-sensing performance of the AZO/WO_(3) heterostructure films arises mainly from their high uniformity, unique microstructures with high surface roughness,and the construction of the heterostructure between the AZO and WO_(3) coatings. This work provides a versatile approach to prepare the MOSs-based heterostructure films for assembling the gas sensors.
文摘ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The properties are characterized by X-ray diffraction,atomic force microscopy and transmission spectra.The parallel oriented ZnO films with mixed orientation for (100) and (110) planes are achieved on glass at the substrate temperature of 200℃ and the source temperature of 280℃,and a qualitative explanation is given for the forming of the mixed orientation.AFM images show that the surface is somewhat rough for the parallel oriented ZnO films.The transmission spectrum exhibits a high transmittance of about 85% in the visible region and shows an optical band gap about 3.25eV at room temperature.
基金The authors acknowledge the financial support of the Brazilian agencies FAPESP(Process N°2008/53311-5 and 2011/21345-0)and CNPq.
文摘Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm-3 to 2.6 × 1019 cm-3. The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.
文摘Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.
文摘The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two important growth parameters,i, e. temperature and pressure, are investigated in detail. Due to the large lattice mismatch between the film and the substrate, ZnO nanocrystals are usually obtained. The growth behavior at the film-substrate interface is found to be strongly dependent on the growth temperature,while the growth pressure determines the shape of the nanostructures as they grow. It is difficult to obtain ZnO films that have good quality and a smooth surface simultaneously. Due to the smaller lattice mismatch,the critical thickness of ZnO on the Al2O3 (1120) surface is found to be much larger than that on the Al2O3 (0001) surface. ZnO/MgZnO quantum wells with graded well thicknesses are grown on the Al2O3 (1120) surfaces,and their optical properties are studied. The built-in electric field in the well layer, generated by the piezoelectric effect, is estimated to be 3 × 10^5 V/cm. It is found that growth at low temperatures and low pressures may facilitate the incorporation of acceptor impurities in ZnO.
基金Project(51302044)supported by the National Natural Science Foundation of ChinaProject(2012M521596)supported by the Chinese Postdoctoral Science FoundationProject(KLB11003)supported by the Key Laboratory of Clean Energy Materials of Guangdong Higher Education Institute,China
文摘Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.
文摘The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida(RKKY) interaction.
文摘Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.
文摘ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
文摘This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.
基金This work was financially supported by the Key Research Program of National Natural Science Foundation of China (Nos.90301002 and 90201025).
文摘ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respectively. The structure and composition of the ZnO films were studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The morphology of the samples was studied by scanning electron microscopy (SEM). Measured results show that ZnO films with hexagonal wurtzite structure were grown on Si(111) substrates when annealed in the two ambiences. The volatilization process of ZnO in the ammonia ambience at high temperature was discussed and the mechanism of the reaction was analyzed.
文摘To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.