期刊文献+
共找到201,913篇文章
< 1 2 250 >
每页显示 20 50 100
Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing:A review
1
作者 Hamed Mirzadeh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1278-1296,共19页
This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including si... This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including silicon carbide(SiC),alumina(Al_(2)O_(3)),quartz(SiO_(2)),boron carbide(B_(4)C),titanium carbide(TiC),carbon fiber,hydroxyapatite(HA),in-situ formed phases,and hybrid reinforcements are summarized.AZ91 composite fabricating methods based on FSP are explained,including groove filling(grooving),drilled hole filling,sandwich method,stir casting followed by FSP,and formation of in-situ particles.The effects of introducing second-phase particles and FSP process parameters(e.g.,tool rotation rate,traverse speed,and the number of passes)on the microstructural modification,grain refinement,homogeneity in the distribution of particles,inhibition of grain growth,mechanical properties,strength–ductility trade-off,wear/tribological behavior,and corrosion resistance are discussed.Finally,useful suggestions for future work are proposed,including focusing on the superplasticity and superplastic forming,metal additive manufacturing processes based on friction stir engineering(such as additive friction stir deposition),direct FSP,stationary shoulder FSP,correlation of the dynamic recrystallization(DRX)grain size with the Zener–Hollomon parameter similar to hot deformation studies,process parameters(such as the particle volume fraction and external cooling),and common reinforcing phases such as zirconia(ZrO_(2))and carbon nanotubes(CNTs). 展开更多
关键词 surface composites magnesium alloys friction stir processing severe plastic deformation thermomechanical processing
下载PDF
Spray Atomized and Codeposited Al-Li Based Metal-matrix Composites Processing and Properties 被引量:1
2
作者 E. Raskin S. Nayim M.Polak and J.Baram(Materials Engineering Dept., Ben-Gurion University of the Negev, Beer-Sheva, Israel )A.N.Sembira(Nuclear Research Center, Negev, Beer-Sheva, Israel)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期329-339,共11页
In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh... In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions. 展开更多
关键词 LI Al Spray Atomized and Codeposited Al-Li Based Metal-matrix composites Processing and Properties
下载PDF
Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix Composites Part Ⅱ:Reinforcement Injection and Deposition 被引量:1
3
作者 V. Erukhimovitch and J.Baram (Materials Engineering Department, Ben-Gurion University of Negev, Beer-Sheva, Israel) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第3期165-170,共6页
The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and c... The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and codeposited composite material is analyzed. The reinforcement particles injection velocity has to be limited between an upper and a lower critical values. in order to ensure entrapment into the matrix droplets in flight. The thermal history of the injected droplets during the deposition stage is calculated with the assumption that the in-flight solidifying droplets reach the substrate while containing still at least 20% liquid volume fraction, in order to avoid porosity of the deposited material. The substrate to pouring-tube orifice distance where that condition is achieved depends strongly on the atomization pressure and the convective heat transfer coefficient of the substrate. It is demonstrated that 'tailoring' the microstructures and the reinforcement volume percent in the deposited material is feasible. The critical process parameters : the atomization pressure, the melt flow rate. the substrate to pouring-tube orifice distance, the reinforcement particles injection location and rate can all be adequately chosen in order to obtain any desired microstructure, grain size, reinforcement volume percent, with the additional benefit, if wanted, of rapid solidification processing 展开更多
关键词 Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix composites Part Reinforcement Injection and Deposition Vc
下载PDF
Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix Composites Part Ⅰ: Atomization
4
作者 V.Erukhimovitch and J.Baram(Materials Engineering Department, Ben-Gurion University of Negev, Beer-Sheva, Israel) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第2期79-90,共12页
Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the de... Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the deposited material. Atomization gas velocities, atomized droplets velocities, convective heat transfer coefficients, thermal histories of the solidifying droplets, freezing rates, fraction solid evolution and solid-liquid interface propagation velocity are calculated. The influence, on the deposit microstructural features, of process parameters like the atomization gas pressure, the pouring tube orifice diameter, the geometrical features of the atomization device,the potency of , pre-existing or injected as reinforcement, nucleation sites, the wetting angle between the liquid melt bnd impurity particles acting as preferred nucleation sites, the in-flight distance of the solidifying droplets in the atomization chamber, i5 evaluated. As a result of the evaluation, appropriate choice of the adjustable process parameters for the production of powders and/or deposits with desired grain size and microstructure, can be made. 展开更多
关键词 Co FIGURE ATOMIZATION Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix composites Part
下载PDF
PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES 被引量:13
5
作者 魏悦广 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期45-58,共14页
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly u... The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted. 展开更多
关键词 size effect strain gradient plasticity the particle-reinforced metal-matrix composite
下载PDF
Nano-SiC_P particles distribution and mechanical properties of Al-matrix composites prepared by stir casting and ultrasonic treatment 被引量:2
6
作者 Shu-sen Wu Du Yuan +2 位作者 Shu-lin Lü Kun Hu Ping An 《China Foundry》 SCIE 2018年第3期203-209,共7页
Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC_Particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-... Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC_Particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-metal process combined with high energy ball milling and ultrasonic vibration methods. The nano particles were β-SiC_P with an average diameter of 40 nm, and pre-oxidized at about 850 °C to form an oxide layer with a thickness of approximately 3 nm. The mm-sized composite granules containing nano-SiC_P were fi rstly produced by milling the mixture of oxidized nano-SiC_P and pure Al powders, and then were remelted in the matrix-metal melt with mechanical stirring and treated by ultrasonic vibration to prepare the composite. SEM analysis results show that the nano-SiC_P articles are distributed uniformly in the matrix and no serious agglomeration is observed. The tensile strength and elongation of the composite with 2 wt.% nano-SiC_P in as-cast state are 226 MPa and 5.5%, improved by 20% and 44%, respectively, compared with the A356 alloy. 展开更多
关键词 metal matrix composites SiC nanopaticles A356 aluminum alloy SOLID-LIQUID mixed CASTING ULTRASONIC vibration
下载PDF
Effect of Alumina Particles Addition on Physico-Mechanical Properties of AL-Matrix Composites 被引量:2
7
作者 Moustafa M. M. Mohammed Omayma A. Elkady Abdelhameed Wazeer Abdelhameed 《Open Journal of Metal》 2013年第4期72-79,共8页
Metal-matrix composites (MMCs) are attracting considerable interest worldwide because of their superior mechanical and tribological properties. This study describes multifactor-based experiments that were applied to r... Metal-matrix composites (MMCs) are attracting considerable interest worldwide because of their superior mechanical and tribological properties. This study describes multifactor-based experiments that were applied to research and investigates Aluminum matrix composite reinforced with 5, 10 & 15 wt% Alumina particles. Mechanical mixing technique was used for fabrication. Sintering was carried out in a vacuum furnace at 600°C for 1 hr. The effects of Alumina percentage on the density, microstructure, both electrical & thermal conductivities, hardness and compression strength was investigated. The results showed that sample containing 5 wt% Alumina is near-fully dense. Also it has the highest hardness and compression strength. 展开更多
关键词 Al matrix composites ALUMINA REINFORCEMENT MECHANICAL MIXING Thermal CONDUCTIVITY Electrical CONDUCTIVITY MECHANICAL Properties
下载PDF
CONSTITUTIVE RELATION OF DISCONTINUOUS REINFORCED METAL-MATRIX COMPOSITES
8
作者 季葆华 王自强 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第2期160-171,共12页
A micromechanical model is developed to simulate the mechanical behaviors of discontinuous reinforced composites. The analysis for a representative unit cell is based on the assumption of a periodic array of aligned r... A micromechanical model is developed to simulate the mechanical behaviors of discontinuous reinforced composites. The analysis for a representative unit cell is based on the assumption of a periodic array of aligned reinforcements. The minimum energy principle is used to determine the unknown coefficients of the displacement field of the unit cell. The constitutive behavior of composites is studied to obtain the relationship between the main variables of matrix and reinforcements. It is concluded that the how strength of composites is strongly influenced by volume fraction, aspect ratio of reinforcement, and the strain hardening exponent of matrix. An analytical constitutive relation of composites is obtained. The predicted results are in agreement with the existing experimental and numerical results. 展开更多
关键词 composites constitutive equation PLASTIC
下载PDF
ANALYSIS OF ELASTOPLASTIC DEFORMATION IN METAL-MATRIX COMPOSITES WITH PARTICULATE REINFORCEMENTS
9
作者 方岱宁 周储伟 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第2期153-160,共8页
In this paper, elastoplastic stress-strain behavior during tensile deformation of an aluminum alloy matrix composite containing alumina circular and non-circular particles is analyzed. In terms of cell models in conju... In this paper, elastoplastic stress-strain behavior during tensile deformation of an aluminum alloy matrix composite containing alumina circular and non-circular particles is analyzed. In terms of cell models in conjunction with continuum plasticity theory, various periodic arrays of particles are assumed in a three-dimensional finite element simulation. The geometrical effects of particle volume fraction, shape, aspect ratio, array and distribution, as well as non-circular particle orientation on the overall elastoplastic stress-strain behavior are examined in view to design optimum microstructures of the composites. 展开更多
关键词 elastoplastic deformation metal-matrix composite PARTICLES finite element analysis
下载PDF
Effects of Sinusoidal Vibration of Crystallization Roller on Composite Microstructure of Ti/Al Laminated Composites by Twin-Roll Casting
10
作者 李励 杜凤山 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期196-205,共10页
A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/... A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality. 展开更多
关键词 laminated composites sinusoidal vibration composite microstructure
下载PDF
Rational design and synthesis of Cr_(1-x)Te/Ag_(2)Te composites for solid-state thermoelectromagnetic cooling near room temperature
11
作者 孙笑晨 谢承昊 +3 位作者 陈思汗 万京伟 谭刚健 唐新峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期580-586,共7页
Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single pha... Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single phase materials except previously reported hexagonal Cr_(1-x)Te half metal where a relatively high magnetic entropy change(-△S_(M))of~2.4 J·kg^(-1)·K^(-1)@5 T and a moderate thermoelectric figure of merit(ZT)of~1.2×10^(-2)@300 K are simultaneously recorded.Herein we aim to increase the thermoelectric performance of Cr_(1-x)Te by compositing with semiconducting Ag_(2)Te.It is discovered that the in-situ synthesis of Cr_(1-x)Te/Ag_(2)Te composites by reacting their constitute elements above melting temperatures is unsuccessful because of strong phase competition.Specifically,at elevated temperatures(T>800 K),Cr_(1-x)Te has a much lower deformation energy than Ag_(2)Te and tends to become more Cr-deficient by capturing Te from Ag_(2)Te.Therefore,Ag is insufficiently reacted and as a metal it deteriorates ZT.We then rationalize the synthesis of Cr_(1-x)Te/Ag_(2)Te composites by ex-situ mix of the pre-prepared Cr_(1-x)Te and Ag_(2)Te binary compounds followed by densification at a low sintering temperature of 573 K under a pressure of 3.5 GPa.We show that by compositing with 7 mol%Ag_(2)Te,the Seebeck coefficient of Cr_(1-x)Te is largely increased while the lattice thermal conductivity is considerably reduced,leading to 72%improvement of ZT.By comparison,-△S_(M)is only slightly reduced by 10%in the composite.Our work demonstrates the potential of Cr_(1-x)Te/Ag_(2)Te composites for thermoelectromagnetic cooling. 展开更多
关键词 thermoelectromagnetic cooling thermoelectric MAGNETOCALORIC composite chromium telluride
下载PDF
Effects of BN on the Mechanical and Thermal Properties of PP/BN Composites
12
作者 陈厚振 王艳芝 +4 位作者 NAN Yu WANG Xu YUE Xianyang ZHANG Yifei FAN Huiling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期345-352,共8页
In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moul... In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one. 展开更多
关键词 thermal properties POLYPROPYLENE composites hexagonal boron nitride
下载PDF
Ti_(3)C_(2)T_(x) MXene/carbon composites for advanced supercapacitors:Synthesis,progress,and perspectives
13
作者 Yanqing Cai Xinggang Chen +4 位作者 Ying Xu Yalin Zhang Huijun Liu Hongjuan Zhang Jing Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期113-142,共30页
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi... MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs. 展开更多
关键词 electrochemical performance MXene/carbon composites SUPERCAPACITORS
下载PDF
Understanding the corrosion and bio-corrosion behaviour of Magnesium composites – a critical review
14
作者 Prithivirajan Sekar S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期890-939,共50页
Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosi... Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosion behaviour of Mg has gained research attention and still remains a hot topic in the application of automobile,aerospace and biomedical industries.The intrinsic high electrochemical nature of Mg limits their utilization in diverse application.This scenario has prompted the development of Mg composites with an aim to achieve superior corrosion and bio-corrosion resistance.The present review enlightens the influence of grain size(GS),secondary phase,texture,type of matrix and reinforcement on the corrosion and bio-corrosion behaviour of Mg composites.Firstly,the corrosion and bio-corrosion behaviour of Mg composites manufactured by primary and secondary processing routes are elucidated.Secondly,the comprehensive corrosion and bio-corrosion mechanisms of these Mg composites are proposed.Thirdly,the individual role of GS,texture and corrosive medium on corrosion and bio-corrosion behaviour of Mg composites are clarified and revealed.The challenges encountered,unanswered issues in this field are explained in detail and accordingly the scope for future research is framed.The review is presented from basic concrete background to advanced corrosion mechanisms with an aim of creating interest among the readers like students,researchers and industry experts from various research backgrounds.Indeed,the corrosion and bio-corrosion behaviour of Mg composites are critically reviewed for the first time to:(i)contribute to the body of knowledge,(ii)foster research and development,(iii)make breakthrough,and(iv)create life changing innovations in the field of Mg composite corrosion. 展开更多
关键词 CORROSION Bio corrosion Magnesium alloys Magnesium composites Magnesium implants.
下载PDF
Microstructural characterization and mechanical properties of(TiC+TiB)/TA15 composites prepared by an in-situ synthesis method
15
作者 Zhi-yong Zhang Jiao-jiao Cheng +3 位作者 Jia-qi Xie Shi-bing Liu Kun Shi Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第2期168-174,共7页
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based... Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃. 展开更多
关键词 titanium matrix composites microstucture MICROHARDNESS tensile properties in-situ synthesis
下载PDF
Valorization of Tree Bark-Derived Suberin in Applications for the Bio-Based Composites Industry–A Recent Review
16
作者 Aleksandra Jeżo 《Journal of Renewable Materials》 EI CAS 2024年第6期1029-1042,共14页
Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also... Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also contains suberin,which plays a major role in protecting the tree from environmental conditions.Suberin is a natural aliphatic-aromatic cross-linked polyester present in the cell walls of both normal and damaged external tissues,the main component of which are long-chain aliphatic acids.Its main role as a plant ingredient is to protect against microbiological factors and water loss.One of the most important suberin monomers are suberin fatty acids,known for their hydrophobic and barrier properties.Therefore,due to the diverse chemical composition of suberin,it is an attractive alternative to hydrocarbon-based materials.Although its potential is recognized,it is not widely used in biocomposites technology,including wood-based composites and the polymer industry.The article will discuss the current knowledge about the potential of suberin and its components in biocomposites technology,which will include surface finishes,composite adhesives and polymer blends. 展开更多
关键词 SUBERIN suberinic acids wood composites BIOcomposites biopolyester
下载PDF
Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites
17
作者 Y.ZARE M.T.MUNIR +1 位作者 G.J.WENG K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期663-676,共14页
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ... In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy. 展开更多
关键词 graphene polymer composite stacked nanosheet tunneling conductivity contact resistance INTERPHASE
下载PDF
Optimization Mechanism of Mechanical Properties of Basalt Fiber-Epoxy Resin Composites by Interfacially Enriched Distribution of Nano-Starch Crystals
18
作者 Yanpeng Wei Jiale Zhao +2 位作者 Jian Zhuang Peng Zhang Zhiwu Han 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期289-296,共8页
Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area mo... Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification. 展开更多
关键词 Basalt fibres Epoxy resin Fibre reinforced composites Starch nanocrystals ECO-FRIENDLY
下载PDF
Microstructural characterization,tribological and corrosion behavior of AA7075-TiC composites
19
作者 Surendarnath Sundaramoorthy Ramesh Gopalan Ramachandran Thulasiram 《China Foundry》 SCIE EI CAS CSCD 2024年第4期334-342,共9页
Aluminum alloys are the potential materials in the automobile and aerospace sectors due to their lower density,easy forming and excellent corrosion resistance.The demand of high strength-to-weight ratio materials in s... Aluminum alloys are the potential materials in the automobile and aerospace sectors due to their lower density,easy forming and excellent corrosion resistance.The demand of high strength-to-weight ratio materials in structural applications needs the engineering industries to seek aluminum alloy with new versions of hard and brittle ceramic particles.The microstructure,hardness,wear and corrosion behaviors of AA7075 composites with 2.5wt.%and 5wt.%TiC particles were studied.Microscopic analysis is evident that the transformation of the strong dendritic morphology to non-dendritic morphology on the incorporation of TiC into AA7075.Furthermore,the precipitation of the second-phase compounds such as Al_(2)CuMg,Al_(2)Cu andFe-rich Al_6(Cu,Fe)/Al_(7)Cu_(2)Fe)is promoted by TiC particles at inter-and intra-dendritic regions.Accordingly,the hardness of composites is improved by grain boundary strengthening and particulate strengthening mechanisms.Both coefficient of friction and wear rate have an inverse relation with TiC concentration.The base alloy without TiC shows adhesive-type wear-induced deformation due to the formation of an oxide film,while composite samples exhibit a mechanically mixed layer and abrasive-type wear behavior.Composite samples shows a higher corrosion rate due to the presence of numerous precipitates which promote pitting corrosion. 展开更多
关键词 AA7075 alloy TiC reinforcement composite microstructure WEAR corrosion TRIBOLOGICAL
下载PDF
Overview of the Synthesis, Characterization, and Application of Tannin-Glyoxal Adhesive for Wood-Based Composites
20
作者 Awanda Wira Anggini Rita Kartika Sari +3 位作者 Efri Mardawati Tati Karliati Apri Heri Iswanto Muhammad Adly Rahandi Lubis 《Journal of Renewable Materials》 EI CAS 2024年第7期1165-1186,共22页
More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that ... More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that are dangerous to health.Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives.This review covers recent advances in synthesizing glyoxal tannin-based resins,especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties.The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has been proven.The glyoxylate reaction forms cross-linked bridges between the aromatic sites of the tannin and glyoxal molecular structures.Glyoxal tannin adhesive with a greater percentage of glyoxal than tannin will produce an adhesive with better characteristics.The gel time reduces as the hardener concentration rises from 7.5%to 15%when glyoxal is used in adhesives.However,excessive amounts of glyoxal will result in a decrease in viscosity values.Glyoxal exhibits faster delivery degradation when it reaches a maximum temperature of approximately 130°C,although it initiates the curing process slightly slower at 110°C.Adding glyoxal to tannin-based adhesives can improve the mechanical properties of composite boards.The wet shear strength of the resulting plywood is increased by 105.4%with the addition of 5-weight percent tannin-based resin with glyoxal as a cross-linker in Soy Protein Adhesive.With glyoxal as a hardener,the panels produced showed good internal bond strengths(>0.35 MPa)and met the international standard specifications for interior-grade panels. 展开更多
关键词 Bio-based adhesives GLYOXAL TANNIN wood adhesives wood-based composites
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部