Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. I...Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.展开更多
Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxi...Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxidizing-free capacity[1–3].Nevertheless,grain growth,sintering and creep deformation at high operation temperatures are still serious problems for Al2O3f/Al2O3 ceramic matrix composites,which can lead to a reduction in the strength and damage tolerance[2].Moreover,Al2O3 can be corroded by the high temperature water vapor in combustion environments and yields volatile products,such as Al(OH)3[4].Consequently,environmental barrier coatings(EBCs)are necessary for Al2O3f/Al2O3 ceramic matrix composites,which can protect Al2O3f/Al2O3 CMC from high temperature and flowing combustion gas corrosion and thus increase the high temperature capability and the service life of components.展开更多
Yttrium aluminum perovskite(YAl O3)is a promising candidate material for environmental barrier coatings(EBCs)to protect Al2 O3 f/Al2 O3 ceramic matrix composites(CMCs)from the corrosion of high-temperature water vapor...Yttrium aluminum perovskite(YAl O3)is a promising candidate material for environmental barrier coatings(EBCs)to protect Al2 O3 f/Al2 O3 ceramic matrix composites(CMCs)from the corrosion of high-temperature water vapor in combustion environments.Nevertheless,the relatively high thermal conductivity is a notable drawback of YAl O3 for environmental barrier coating application.Herein,in order to make REAl O3 more thermal insulating,a novel high-entropy rare-earth aluminate ceramic(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3 was designed and synthesized.The as-prepared(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3 ceramic possesses close thermal expansion coefficient(9.02×10-6/oC measured from room temperature to 1200℃)to that of Al2 O3.The thermal conductivity of(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3 at room temperature is 4.1 W·m-1K-1,which is almost one third of the value of YAl O3.Furthermore,to effectively prevent the penetration of water vapor from possible pores/cracks of coating layer,which are often observed in T/EBCs,a tri-layer EBC system REAl O3/RE3 Al5 O12/(Al2 O3 f/Al2 O3 CMCs)is designed.Close thermal expansion coefficient to Al2 O3 and low thermal conductivity of(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3,as well as the formation of dense garnet layer at(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3/Al2 O3 interface,indicate that this new type of high-entropy ceramic is suitable as a candidate environmental barrier coating material for Al2 O3 f/Al2 O3 CMCs.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206).
文摘Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxidizing-free capacity[1–3].Nevertheless,grain growth,sintering and creep deformation at high operation temperatures are still serious problems for Al2O3f/Al2O3 ceramic matrix composites,which can lead to a reduction in the strength and damage tolerance[2].Moreover,Al2O3 can be corroded by the high temperature water vapor in combustion environments and yields volatile products,such as Al(OH)3[4].Consequently,environmental barrier coatings(EBCs)are necessary for Al2O3f/Al2O3 ceramic matrix composites,which can protect Al2O3f/Al2O3 CMC from high temperature and flowing combustion gas corrosion and thus increase the high temperature capability and the service life of components.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089)。
文摘Yttrium aluminum perovskite(YAl O3)is a promising candidate material for environmental barrier coatings(EBCs)to protect Al2 O3 f/Al2 O3 ceramic matrix composites(CMCs)from the corrosion of high-temperature water vapor in combustion environments.Nevertheless,the relatively high thermal conductivity is a notable drawback of YAl O3 for environmental barrier coating application.Herein,in order to make REAl O3 more thermal insulating,a novel high-entropy rare-earth aluminate ceramic(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3 was designed and synthesized.The as-prepared(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3 ceramic possesses close thermal expansion coefficient(9.02×10-6/oC measured from room temperature to 1200℃)to that of Al2 O3.The thermal conductivity of(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3 at room temperature is 4.1 W·m-1K-1,which is almost one third of the value of YAl O3.Furthermore,to effectively prevent the penetration of water vapor from possible pores/cracks of coating layer,which are often observed in T/EBCs,a tri-layer EBC system REAl O3/RE3 Al5 O12/(Al2 O3 f/Al2 O3 CMCs)is designed.Close thermal expansion coefficient to Al2 O3 and low thermal conductivity of(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3,as well as the formation of dense garnet layer at(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3/Al2 O3 interface,indicate that this new type of high-entropy ceramic is suitable as a candidate environmental barrier coating material for Al2 O3 f/Al2 O3 CMCs.