Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
Microstructure and interracial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy an...Microstructure and interracial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interracial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interracial layer growth of joints brazed with active composite filler material is t^1/2 as described by Fickian law as the joints brazed with conventional active filler metal.展开更多
The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics...The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics analyses show that the chemical reactions are 3Cu 2O+2Al=6Cu+Al 2O 3 or 3CuO+2Al=3Cu+Al 2O 3. A related equilibrium diagram was drawn. The experiments and investigation show that the formation rate of Al 2O 3 was controlled by the diffusion of oxygen in matrix.展开更多
Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high ther...Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. The nano-Al2O3/Cu composite was produced by internal oxidation. The microstructures of the composite were analyzed by the TEM and its hot deformation behavior was investigated by means of continuous compression tests performed on a Gleeble 1500 thermo-simulator. Making use of the modified algorithm-Levenberg-Marquardt (L-M) algorithm BP neural network, a model for predicting the flow stresses during hot deformation was set up on the base of the experimental data. Results show that the microstructures of the composite are characterized by uniform distribution of nano-Al2O3 particles in Cu-matrix. The sliding of dislocations is the main deformation mechanism. The dynamic recovery is the main softening mode with the flow stress decreasing gently from 500℃ to 850 ~C. The recrystallization of Cu-matrix can be retarded late into as high as 850 ℃, when it happens only partially. The well-trained BP neural network model can accurately describe the influence of the temperature, strain rate, and true strain on the flow stresses, therefore, it can precisely predict the flow stresses of the composite under given deforming conditions and provide a new way to optimize hot deforming process parameters.展开更多
This work concerns with the high temperature deformation of internally oxidized Al2O3/Cu composites. The investigation revealed that dispersive alumina can obstruct dislocation sliding and define the subgrain size the...This work concerns with the high temperature deformation of internally oxidized Al2O3/Cu composites. The investigation revealed that dispersive alumina can obstruct dislocation sliding and define the subgrain size thereby improve significantly the strength of the materials at high temperature. The sliding of dislocations is a main deformation mechanism in the given temperature range. The sliding of grain boundary and diffusive creep play important roles at high temperature and low strain rate. The dispersoids can raise the recrystallization temperature to higher than 1223 K. Dynamic recovery is a main softening way under the experimental conditions. Higher deformation rate and lower deformation temperature imply a higher flow stress.展开更多
ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that b...ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that both the UTS and the hardness are improved and the impact toughness is decreased with the increase of the volume fraction of fibers (Vf). After Ce is added ,UTS (Vf>15%) and the hardness are improved at room temperature because of the modification of Ce, but the impact toughness and UTS at elevated temperature are lowered.The filtered action of the fiber preform results in that the influence of the amount of Ce added from 0. 1 wt% to 0. 5 wt% on the mechanical properties of the composites can be ignored.展开更多
Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sinter...Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sintered on Al2O3 base ceramics according to the same thermal treatment system of leucite micro-crystallization reported in previous literatures. The products of each group were analyzed by polarizing microscope, X-ray diffractometer, and an INSTRON material testing machine. Under the thermal treatment system, leucite crystals were formed in samples of each group, and dispersed evenly. Meanwhile, the compressive strengths of group 3 and group 4 were higher than those of group 1 and group 2. Samples of group 3 showed better mechanical properties than others. The conclusions are drawn that Leucite crystals can be controlled in K2O-Al2O3-SiO2 system glass ceramic-Al2O3 ceramic composite material, and the thickness of glass ceramic has a notable influence on the compressive strength of this ceramic composite material.展开更多
Al_2O_3–CaO–SiC-based ceramic composites with four different compositions were sintered at 1700℃ for 3 h in an air furnace. The phase analysis, microstructural characterization, and elemental composition determinat...Al_2O_3–CaO–SiC-based ceramic composites with four different compositions were sintered at 1700℃ for 3 h in an air furnace. The phase analysis, microstructural characterization, and elemental composition determination of the developed composites were performed by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), and energy-dispersive X-ray(EDAX) analysis, respectively. The shrinkage, thermal properties, and electrical resistivity of the composites were also studied. The experimental results showed the effects of adding silicon carbide and calcia to alumina on the thermal, electrical, and shrinkage properties of the resultant composites. Among the four investigated ceramic composites, the one composed of 99 wt% alumina, 0.5 wt% CaO, and 0.5 wt% SiC exhibited the best characteristics for use as a potting material in a dispenser cathode of a microwave tube. The material exhibited slight expansion instead of shrinkage during drying or firing. Other properties of the composite powder, such as its thermal properties and electrical resistivity, were comparable to those of a commercial alumina powder.展开更多
Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characte...Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.展开更多
Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. I...Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.展开更多
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金the National Natural Science Foundation of China(Grant No.50075019) the Visiting Scholar Foundation of Key Lab.in University of China
文摘Microstructure and interracial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interracial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interracial layer growth of joints brazed with active composite filler material is t^1/2 as described by Fickian law as the joints brazed with conventional active filler metal.
文摘The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics analyses show that the chemical reactions are 3Cu 2O+2Al=6Cu+Al 2O 3 or 3CuO+2Al=3Cu+Al 2O 3. A related equilibrium diagram was drawn. The experiments and investigation show that the formation rate of Al 2O 3 was controlled by the diffusion of oxygen in matrix.
基金Henan Innovation Project for University Prominent Research Talents (2007KYCX008)Henan Major Science and Technol-ogy Project (0523021500)+1 种基金Henan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation
文摘Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. The nano-Al2O3/Cu composite was produced by internal oxidation. The microstructures of the composite were analyzed by the TEM and its hot deformation behavior was investigated by means of continuous compression tests performed on a Gleeble 1500 thermo-simulator. Making use of the modified algorithm-Levenberg-Marquardt (L-M) algorithm BP neural network, a model for predicting the flow stresses during hot deformation was set up on the base of the experimental data. Results show that the microstructures of the composite are characterized by uniform distribution of nano-Al2O3 particles in Cu-matrix. The sliding of dislocations is the main deformation mechanism. The dynamic recovery is the main softening mode with the flow stress decreasing gently from 500℃ to 850 ~C. The recrystallization of Cu-matrix can be retarded late into as high as 850 ℃, when it happens only partially. The well-trained BP neural network model can accurately describe the influence of the temperature, strain rate, and true strain on the flow stresses, therefore, it can precisely predict the flow stresses of the composite under given deforming conditions and provide a new way to optimize hot deforming process parameters.
基金The work was financiaIly supported hy the NaturalScience Foundation of Hebei Province (No.94087) alld Pd-ucation Conlmittee of
文摘This work concerns with the high temperature deformation of internally oxidized Al2O3/Cu composites. The investigation revealed that dispersive alumina can obstruct dislocation sliding and define the subgrain size thereby improve significantly the strength of the materials at high temperature. The sliding of dislocations is a main deformation mechanism in the given temperature range. The sliding of grain boundary and diffusive creep play important roles at high temperature and low strain rate. The dispersoids can raise the recrystallization temperature to higher than 1223 K. Dynamic recovery is a main softening way under the experimental conditions. Higher deformation rate and lower deformation temperature imply a higher flow stress.
文摘ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that both the UTS and the hardness are improved and the impact toughness is decreased with the increase of the volume fraction of fibers (Vf). After Ce is added ,UTS (Vf>15%) and the hardness are improved at room temperature because of the modification of Ce, but the impact toughness and UTS at elevated temperature are lowered.The filtered action of the fiber preform results in that the influence of the amount of Ce added from 0. 1 wt% to 0. 5 wt% on the mechanical properties of the composites can be ignored.
基金Funded by the Project for Tackling Key Problems in Science and Technology of Wuhan(No.201262523841)
文摘Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sintered on Al2O3 base ceramics according to the same thermal treatment system of leucite micro-crystallization reported in previous literatures. The products of each group were analyzed by polarizing microscope, X-ray diffractometer, and an INSTRON material testing machine. Under the thermal treatment system, leucite crystals were formed in samples of each group, and dispersed evenly. Meanwhile, the compressive strengths of group 3 and group 4 were higher than those of group 1 and group 2. Samples of group 3 showed better mechanical properties than others. The conclusions are drawn that Leucite crystals can be controlled in K2O-Al2O3-SiO2 system glass ceramic-Al2O3 ceramic composite material, and the thickness of glass ceramic has a notable influence on the compressive strength of this ceramic composite material.
基金financial support of Council of Scientific and Industrial Research (CSIR), India Through network Project (No. MTDDC-PSC0101)
文摘Al_2O_3–CaO–SiC-based ceramic composites with four different compositions were sintered at 1700℃ for 3 h in an air furnace. The phase analysis, microstructural characterization, and elemental composition determination of the developed composites were performed by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), and energy-dispersive X-ray(EDAX) analysis, respectively. The shrinkage, thermal properties, and electrical resistivity of the composites were also studied. The experimental results showed the effects of adding silicon carbide and calcia to alumina on the thermal, electrical, and shrinkage properties of the resultant composites. Among the four investigated ceramic composites, the one composed of 99 wt% alumina, 0.5 wt% CaO, and 0.5 wt% SiC exhibited the best characteristics for use as a potting material in a dispenser cathode of a microwave tube. The material exhibited slight expansion instead of shrinkage during drying or firing. Other properties of the composite powder, such as its thermal properties and electrical resistivity, were comparable to those of a commercial alumina powder.
基金supported by the National Natural Science Foundation of China (No.50574075)Program for New Century Excellent Talents in University(No.NCET-05-0873)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20060700011)
文摘Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.
基金financially supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.