The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed...The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.展开更多
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
The rapid development of bulk β-Ga_2O_3 crystals has attracted much attention to their use as ultra-wide bandgap materials for next-generation power devices owing to its large bandgap(~ 4.9 eV) and large breakdown e...The rapid development of bulk β-Ga_2O_3 crystals has attracted much attention to their use as ultra-wide bandgap materials for next-generation power devices owing to its large bandgap(~ 4.9 eV) and large breakdown electric field of about8 MV/cm. Low cost and high quality of large β-Ga_2O_3 single-crystal substrates can be attained by melting growth techniques widely used in the industry. In this paper, we first present an overview of the properties of β-Ga_2O_3 crystals in bulk form. We then describe the various methods for producing bulk β-Ga_2O_3 crystals and their applications. Finally, we will present a future perspective of the research in the area in the area of single crystal growth.展开更多
The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyse...The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyses were made by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD).The experiment results show that the endothermic peak temperature about 760℃ is associated with transition and the exothermic peak temperature about 1000℃ is associated with crystallization.The crystallization peak temperature decreases with increasing the Fe203 content.The crystallization mechanism is changed from two-dimensional crystallization to one-dimensional growth,and the intensity of diopside peaks becomes stronger gradually.There is a saltation for the crystallization temperature with the addition of 0.5%Fe2O3 due to the decomposition of Fe2O3.Si-O-Si,O-Si-O and T-O-T(T=Si,Fe,Al) linkages are observed in Fe2O3-CaO-MgO-Al2O3-SiO2 glass.展开更多
High quality 0.02 mol%,0.05 mol%,and 0.08 mol%Fe:β-Ga2O3 single crystals were grown by the floating zone method.The crystal structure,optical,electrical,and thermal properties were measured and discussed.Fe:β-Ga2O3 ...High quality 0.02 mol%,0.05 mol%,and 0.08 mol%Fe:β-Ga2O3 single crystals were grown by the floating zone method.The crystal structure,optical,electrical,and thermal properties were measured and discussed.Fe:β-Ga2O3 single crystals showed transmittance of higher than 80%in the near infrared region.With the increase of the Fe doping concentration,the optical bandgaps reduced and room temperature resistivity increased.The resistivity of 0.08 mol%Fe:β-Ga2O3 crystal reached to 3.63×1011Ω·cm.The high resistivity Fe:β-Ga2O3 single crystals could be applied as the substrate for the high-power field effect transistors(FETs).展开更多
Four crystals with the general formula of A3BGa3Si2O14 (A = Ca^2+, Sr^2+; B=Nb^5+ , Ta^5+) grown by using the Czoehralsky technique were reported. They are all uniaxial and belong to 32 point group. Their transm...Four crystals with the general formula of A3BGa3Si2O14 (A = Ca^2+, Sr^2+; B=Nb^5+ , Ta^5+) grown by using the Czoehralsky technique were reported. They are all uniaxial and belong to 32 point group. Their transmission, rotatory angle and specific rotation dispersion were investigated by speetrophotometer and compared with LGS. The transmission spectra show that they are transparent in the visible wavelength region beyond 294 nm and infrared region, and their transmission are all larger than that of LGS.The transmission spectra between parallel polasizers show that they have large optical activities which are larger than that of LGS. Of the four crystals, Sr3NbGa3Si2O14 has the largest optical activity : 240.75 (°)·mm^-1 at 0.30 μm wavelength, 34.73 (°) ·mm^-1 at 0. 633 μm wavelength. The Bohzmann's coefficients of these crystals were calculated, which were in good agreement with earlier measurement in other reference.展开更多
The title compound, Cs 2[Mg(CO 3) 2(H 2O) 4], was synthesized by the dropwise addition of an aqueous solution of Mg(NO 3) 2 to a stirred aqueous Cs 2CO 3/CsHCO 3 solution. A colorless needle shaped crystal was formed ...The title compound, Cs 2[Mg(CO 3) 2(H 2O) 4], was synthesized by the dropwise addition of an aqueous solution of Mg(NO 3) 2 to a stirred aqueous Cs 2CO 3/CsHCO 3 solution. A colorless needle shaped crystal was formed by slow evaporation. The crystal structure was established on the basis of the single crystal X ray diffraction data. Cs 2[Mg(CO 3) 2(H 2O) 4] crystallized in the orthorhombic space group Pbca (No. 61) with a =0.658 4(1) nm, b =1.257 9(1) nm, c =1.301 3(1) nm, \{ V =1.077 8 nm 3, Z =4, D x=2.971 g·cm -3 , μ =69.20 cm -1 , F (000)=888, T =298 K, final R =0.029 and R w=0.024 for 1 037 observed reflections. The crystal consists of Cs + cations and the complex trans [Mg(CO 3) 2(H 2O) 4] 2- anions with each Mg atom coordinated by the six oxygens of two carbonate groups and four water molecules [ d (Mg_O)=0.203 6(4), 0.207 4(4), 0.213 4(4) nm]. The complex trans [Mg(CO 3) 2(H 2O) 4] 2- anions are arranged in a strongly compressed bcc pattern. A 3D network was formed through the intermolecular hydrogen bonds. The Cs + cations are located in cavities, each being surrounded by nine oxygens of five complex anions with d (Cs_O)=0.306 1-0.348 8 nm. The CO 2- 3 group reveals a lowering of D 3h symmetry due to site and coordination effects, but not any observable deviation from co planarity [ d (C_O)=0.127 2(6), 0.127 5(7) , 0.130 5(6) nm and O_C_O=119.6(5)°, 120.1(5)°, 120.4(5)°].展开更多
Experiments performed on the grwth of mixed crystals of rare earth tartrates (Y1-xSmx)2 (C4H4O6)3.zH2O (0≤x≤1) from silica gels at 35~40℃ and 25~30℃ employing single-diffusion technique. are discussed. The crysta...Experiments performed on the grwth of mixed crystals of rare earth tartrates (Y1-xSmx)2 (C4H4O6)3.zH2O (0≤x≤1) from silica gels at 35~40℃ and 25~30℃ employing single-diffusion technique. are discussed. The crystals maintain spherulitic morphology, irrespective of the value of x, concentration of upper and lower reactants, gel pH, gel age and gel temperature. Formation Of Liesegang rings in this system is a temperature dependent phenomenon. It is shown that with the increase of the value of x the system passes from Liesegangring phenomenon to singlezone phenomenon. Operative mechanism of crystallization in the higher (35~40℃) and lower temperature ranges (25~30℃) is explained. Seeded growth experiments indicate the possibility of increasing the size of the spherulites in the gel medium展开更多
BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy compos...BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.展开更多
As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislo...As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There's no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the(102) plane, the(101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of "shoulder part" during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.展开更多
Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric pro...Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred during the heat treatment procedure leads to the enhancement of dielectric constant. All the three compositions of glass-ceramic composites exhibit ferroelectricity when tested at room tem-perature. Both the values of the remanent polarization and coercive field are enhanced regularly with the gradual increase in the concentration of Gd2O3 additive under the same testing field.展开更多
Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminesce...Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under ^137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.展开更多
YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some interm...YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.展开更多
In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical...In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantly refined and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2o3 particulates,the high-density dislocation zone is formed around nano-Al2o3p and the particle deformation zone is formed near micron-ABOap.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2o3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantly improving the yield strength and tensile strength of Al2O3p/AZ31 composites.展开更多
Gd3Sc2Ga3O12 polycrystalline material for single crystal growth was prepared with Ga, Gd2O3 and Sc2O3 as starting materials and aqueous ammonia as the precipitator by co-precipitation method. The precursors sintered a...Gd3Sc2Ga3O12 polycrystalline material for single crystal growth was prepared with Ga, Gd2O3 and Sc2O3 as starting materials and aqueous ammonia as the precipitator by co-precipitation method. The precursors sintered at various temperatures were characterized by infrared spectra (IR), X-ray diffractometry (XRD) and transmitted electron microscopy (TEM). The results showed that pure GSGG phase could be obtained at 900 ℃. The sintered powders were well-dispersed and less-aggregated in the sintered temperature range of 900 - 1000 ℃. XRD and TEM show that the polycrystalline particle sizes of the polycrystalline powders were about 20 - 50 nm. Compared with the method that Ga2O3, Gd2O3 and Sc2O3 were mixed directly and sintered to get polycrystalline materials, the synthesized temperature was lower and sintered time was shorter. Thus co-precipitation was a good method to synthesize GSGG polycrystalline material.展开更多
Two new metal-organic complexes,{[Co2(bptc)(DPPZ)2(H2O)2]·H2O}n 1 and {[Co2(ccm)2(DPPZ)2]·2H2O}n 2,were obtained by the hydrothermal reactions of Co(NO3)2·6H2O with chelating ligand dipyrido...Two new metal-organic complexes,{[Co2(bptc)(DPPZ)2(H2O)2]·H2O}n 1 and {[Co2(ccm)2(DPPZ)2]·2H2O}n 2,were obtained by the hydrothermal reactions of Co(NO3)2·6H2O with chelating ligand dipyrido[3,2-a:2',3'-c]phenazine(DPPZ) and the corresponding carboxylic acid,namely,3,3',4,4'-benzophenonetetracarboxylic acid(H4bptc) or 2-carboxycinnamic acid(H2ccm),respectively.The complexes were structurally characterized by single-crystal X-ray diffraction,elemental analyses,IR spectra,and thermal gravimetry.1 presents unique chiral chain structures,which are further consolidated into three-dimensional supramolecular frameworks via noncovalent bonds,such as hydrogen bonding and π-π interactions.2 features infinite double-chain structures,which are connected by strong π-π interactions to result in three-dimensional supramolecular architectures.展开更多
文摘The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.
基金funded by the following grants:Chinese Academy of Sciences president’s International Fellowship Initiative(Grant No.2018PE0033)National Natural Science Foundation of China(Grant No.51802327)+1 种基金Science and Technology Commission of Shanghai Municipality(No.18511110500)Pre-research Fund Key Project(No.6140922010601)
文摘The rapid development of bulk β-Ga_2O_3 crystals has attracted much attention to their use as ultra-wide bandgap materials for next-generation power devices owing to its large bandgap(~ 4.9 eV) and large breakdown electric field of about8 MV/cm. Low cost and high quality of large β-Ga_2O_3 single-crystal substrates can be attained by melting growth techniques widely used in the industry. In this paper, we first present an overview of the properties of β-Ga_2O_3 crystals in bulk form. We then describe the various methods for producing bulk β-Ga_2O_3 crystals and their applications. Finally, we will present a future perspective of the research in the area in the area of single crystal growth.
基金Projects(51264023,51364020,U1202271)supported by the National Natural Science Foundation of ChinaProject(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of ChinaProject(2014HA003)supported by the Science and Technology Leading Talent of Yunnan Province,China
文摘The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyses were made by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD).The experiment results show that the endothermic peak temperature about 760℃ is associated with transition and the exothermic peak temperature about 1000℃ is associated with crystallization.The crystallization peak temperature decreases with increasing the Fe203 content.The crystallization mechanism is changed from two-dimensional crystallization to one-dimensional growth,and the intensity of diopside peaks becomes stronger gradually.There is a saltation for the crystallization temperature with the addition of 0.5%Fe2O3 due to the decomposition of Fe2O3.Si-O-Si,O-Si-O and T-O-T(T=Si,Fe,Al) linkages are observed in Fe2O3-CaO-MgO-Al2O3-SiO2 glass.
基金the Scientific and Innovative Action Plan of Shanghai,China(Grant No.18511110502)Equipment Pre-research Fund Key Project,China(Grant No.6140922010601).
文摘High quality 0.02 mol%,0.05 mol%,and 0.08 mol%Fe:β-Ga2O3 single crystals were grown by the floating zone method.The crystal structure,optical,electrical,and thermal properties were measured and discussed.Fe:β-Ga2O3 single crystals showed transmittance of higher than 80%in the near infrared region.With the increase of the Fe doping concentration,the optical bandgaps reduced and room temperature resistivity increased.The resistivity of 0.08 mol%Fe:β-Ga2O3 crystal reached to 3.63×1011Ω·cm.The high resistivity Fe:β-Ga2O3 single crystals could be applied as the substrate for the high-power field effect transistors(FETs).
文摘Four crystals with the general formula of A3BGa3Si2O14 (A = Ca^2+, Sr^2+; B=Nb^5+ , Ta^5+) grown by using the Czoehralsky technique were reported. They are all uniaxial and belong to 32 point group. Their transmission, rotatory angle and specific rotation dispersion were investigated by speetrophotometer and compared with LGS. The transmission spectra show that they are transparent in the visible wavelength region beyond 294 nm and infrared region, and their transmission are all larger than that of LGS.The transmission spectra between parallel polasizers show that they have large optical activities which are larger than that of LGS. Of the four crystals, Sr3NbGa3Si2O14 has the largest optical activity : 240.75 (°)·mm^-1 at 0.30 μm wavelength, 34.73 (°) ·mm^-1 at 0. 633 μm wavelength. The Bohzmann's coefficients of these crystals were calculated, which were in good agreement with earlier measurement in other reference.
文摘The title compound, Cs 2[Mg(CO 3) 2(H 2O) 4], was synthesized by the dropwise addition of an aqueous solution of Mg(NO 3) 2 to a stirred aqueous Cs 2CO 3/CsHCO 3 solution. A colorless needle shaped crystal was formed by slow evaporation. The crystal structure was established on the basis of the single crystal X ray diffraction data. Cs 2[Mg(CO 3) 2(H 2O) 4] crystallized in the orthorhombic space group Pbca (No. 61) with a =0.658 4(1) nm, b =1.257 9(1) nm, c =1.301 3(1) nm, \{ V =1.077 8 nm 3, Z =4, D x=2.971 g·cm -3 , μ =69.20 cm -1 , F (000)=888, T =298 K, final R =0.029 and R w=0.024 for 1 037 observed reflections. The crystal consists of Cs + cations and the complex trans [Mg(CO 3) 2(H 2O) 4] 2- anions with each Mg atom coordinated by the six oxygens of two carbonate groups and four water molecules [ d (Mg_O)=0.203 6(4), 0.207 4(4), 0.213 4(4) nm]. The complex trans [Mg(CO 3) 2(H 2O) 4] 2- anions are arranged in a strongly compressed bcc pattern. A 3D network was formed through the intermolecular hydrogen bonds. The Cs + cations are located in cavities, each being surrounded by nine oxygens of five complex anions with d (Cs_O)=0.306 1-0.348 8 nm. The CO 2- 3 group reveals a lowering of D 3h symmetry due to site and coordination effects, but not any observable deviation from co planarity [ d (C_O)=0.127 2(6), 0.127 5(7) , 0.130 5(6) nm and O_C_O=119.6(5)°, 120.1(5)°, 120.4(5)°].
文摘Experiments performed on the grwth of mixed crystals of rare earth tartrates (Y1-xSmx)2 (C4H4O6)3.zH2O (0≤x≤1) from silica gels at 35~40℃ and 25~30℃ employing single-diffusion technique. are discussed. The crystals maintain spherulitic morphology, irrespective of the value of x, concentration of upper and lower reactants, gel pH, gel age and gel temperature. Formation Of Liesegang rings in this system is a temperature dependent phenomenon. It is shown that with the increase of the value of x the system passes from Liesegangring phenomenon to singlezone phenomenon. Operative mechanism of crystallization in the higher (35~40℃) and lower temperature ranges (25~30℃) is explained. Seeded growth experiments indicate the possibility of increasing the size of the spherulites in the gel medium
基金Project (10972190) supported by the National Natural Science Foundation of China Projects (09A089, 08C207) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject (2010FJ3132) supported by the Planned Science and Technology Project of Hunan Province,China
文摘BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.
基金the Financial support from the National key Research and Development Program of China(Nso.2018YFB0406502,2016YFB1102201)the National Natural Science Foundation of China(Grant No.51321091)+2 种基金the key Research and Development Program of Shandong Province(No.2018CXGC0410)the Young Scholars Program of Shandong University(No.2015WLJH36)the 111 Project 2.0(No.BP2018013)
文摘As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There's no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the(102) plane, the(101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of "shoulder part" during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.
基金supported by the National Natural Science Foundation of China (No. 51107005)
文摘Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred during the heat treatment procedure leads to the enhancement of dielectric constant. All the three compositions of glass-ceramic composites exhibit ferroelectricity when tested at room tem-perature. Both the values of the remanent polarization and coercive field are enhanced regularly with the gradual increase in the concentration of Gd2O3 additive under the same testing field.
基金Project supported by the National Natural Science Foundation of China (20571088)the Science and Technology Project of Guangdong Province (2005B10301016, 2006B14801001)
文摘Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air)and reducing atmosphere (H2 + N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under ^137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.
文摘YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.
基金the National Key Research and Development Program(2019YFB2006500)National Natural Science Foundation of China(51404082).
文摘In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantly refined and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2o3 particulates,the high-density dislocation zone is formed around nano-Al2o3p and the particle deformation zone is formed near micron-ABOap.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2o3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantly improving the yield strength and tensile strength of Al2O3p/AZ31 composites.
基金Project supported by the National Natural Science Foundation of China (50472104 60478025)
文摘Gd3Sc2Ga3O12 polycrystalline material for single crystal growth was prepared with Ga, Gd2O3 and Sc2O3 as starting materials and aqueous ammonia as the precipitator by co-precipitation method. The precursors sintered at various temperatures were characterized by infrared spectra (IR), X-ray diffractometry (XRD) and transmitted electron microscopy (TEM). The results showed that pure GSGG phase could be obtained at 900 ℃. The sintered powders were well-dispersed and less-aggregated in the sintered temperature range of 900 - 1000 ℃. XRD and TEM show that the polycrystalline particle sizes of the polycrystalline powders were about 20 - 50 nm. Compared with the method that Ga2O3, Gd2O3 and Sc2O3 were mixed directly and sintered to get polycrystalline materials, the synthesized temperature was lower and sintered time was shorter. Thus co-precipitation was a good method to synthesize GSGG polycrystalline material.
基金Supported by the National Natural Science Foundation of China (No. 60978059)Program for New Century Excellent Talents in University (NCET-10-0176)the Natural Science Foundation of Jilin Province (No. 20090527)
文摘Two new metal-organic complexes,{[Co2(bptc)(DPPZ)2(H2O)2]·H2O}n 1 and {[Co2(ccm)2(DPPZ)2]·2H2O}n 2,were obtained by the hydrothermal reactions of Co(NO3)2·6H2O with chelating ligand dipyrido[3,2-a:2',3'-c]phenazine(DPPZ) and the corresponding carboxylic acid,namely,3,3',4,4'-benzophenonetetracarboxylic acid(H4bptc) or 2-carboxycinnamic acid(H2ccm),respectively.The complexes were structurally characterized by single-crystal X-ray diffraction,elemental analyses,IR spectra,and thermal gravimetry.1 presents unique chiral chain structures,which are further consolidated into three-dimensional supramolecular frameworks via noncovalent bonds,such as hydrogen bonding and π-π interactions.2 features infinite double-chain structures,which are connected by strong π-π interactions to result in three-dimensional supramolecular architectures.