Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed...The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were...Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.展开更多
In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and micro...In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters.展开更多
The effects of hot extrusion and addition of Al_(2)O_(3p) on both microstructure and tribological behavior of 7075 composites were investigated via optical microscopy(OM),scanning electron microscopy(SEM),energy dispe...The effects of hot extrusion and addition of Al_(2)O_(3p) on both microstructure and tribological behavior of 7075 composites were investigated via optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and transmission electron microscopy(TEM).The experimental consequences reveal that the optimal addition of Al_(2)O_(3p) was 2 wt%.After hot extrusion,the Mg(Zn,Cu,Al)2 phases partially dissolve into the matrix and generate many uniformly distributed aging precipitation particles,the Al_(7)Cu_(2)Fe phases are squeezed and broken,and the Al_(2)O_(3p) become uniform distribution.The microhardness of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites reaches HV 170.34,increased by 41.5%than as-cast composites.The wear rate of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites is further lower than that of as-cast composites under the same condition.SEM-EDS analyses reveal that the reinforced wear resistance of composites can put down to the protective effect of the Al_(2)O_(3p) reinforced transition layer.After hot extrusion,the transition layer becomes stable,which determines the reinforced wear resistance of the as-extruded composites.展开更多
Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles a...Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles as well as the microstructures,mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and in situ tensile tests.The results indicate that with the pulsed magnetic field assistance,the morphologies of the in situ particles are mainly with ball-shape,the sizes are in nanometer scale and the distributions in the matrix are uniform.The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.These are due to the strong vibration induced by the applied magnetic field in the aluminum melt,which in turn,accelerates the melt reactions.The effects of the magnetic field on the above contributions are discussed in detail.展开更多
Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were...Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed.展开更多
In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical...In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantly refined and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2o3 particulates,the high-density dislocation zone is formed around nano-Al2o3p and the particle deformation zone is formed near micron-ABOap.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2o3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantly improving the yield strength and tensile strength of Al2O3p/AZ31 composites.展开更多
The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics...The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics analyses show that the chemical reactions are 3Cu 2O+2Al=6Cu+Al 2O 3 or 3CuO+2Al=3Cu+Al 2O 3. A related equilibrium diagram was drawn. The experiments and investigation show that the formation rate of Al 2O 3 was controlled by the diffusion of oxygen in matrix.展开更多
To improve the mechanical properties of alumina particulates reinforced steel matrix composite, Ti powder was added into the alumina preform, a 5140 steel matrix composite was fabricated by squeeze casting, and the in...To improve the mechanical properties of alumina particulates reinforced steel matrix composite, Ti powder was added into the alumina preform, a 5140 steel matrix composite was fabricated by squeeze casting, and the influences of Ti powder on the microstructure, hardness and bending strength of the composite were investigated, compared with the composite without adding Ti powder. Applied Ti powder and alumina particulates were 10-25 μm and 100-180 μm in size, respectively. Both composites were successfully fabricated, however Ti powder addition increased the infiltration thickness of the composite. In the Ti contained composite, a TiC film in micron scale is formed on the surface of alumina particles, many TiC aggregates are dispersed in the steel matrix without obvious remaining Ti powder. The hardness and the three-point bending strength of the composite reach 49.5 HRC and 1 018 MPa, respectively, which are 17.9% and 52.4% higher than those of the composite in the absence of Ti addition. Fracture morphology shows that the debonding of alumina particulates is eliminated for the composite in the presence of Ti addition. Sessile drop test shows the average wetting angle between 5140 steel and that of Ti coated Al2O3 is about 82.15°, much lower than the wetting angle 150° between steel and pure Al2O3. Therefore, the increase in the mechanical properties of the composite is attributed to the improvement of Al2O3 p/steel interface wetting and bonding by adding Ti powder in the preform.展开更多
In-situ Al2O3/TiAl composites were fabricated by pressure-assisted exothermic dispersion (PAXD) method from elemental powder mixtures of Ti, Al, TiO2, and Nb2O5. The microstructures and mechanical properties of the ...In-situ Al2O3/TiAl composites were fabricated by pressure-assisted exothermic dispersion (PAXD) method from elemental powder mixtures of Ti, Al, TiO2, and Nb2O5. The microstructures and mechanical properties of the as-sintered composites are investigated. The results show that the as-sintered products consist of γ-TiAl, α2-Ti3Al, Al2O3, and NbAl3 phases. Microstructure analysis indicates that Al2O3 particles tend to disperse on the grain boundaries. Application of a moderate pressure of 35 MPa at 1200℃ yields Al2O3/TiAl composites with fine Al2O3 reinforcement and a discontinuous network linking by Al2O3 particles. The aluminide component has a fine submicron γ +α2 lamellar microstructure. With increasing Nb2O5 content, Al2O3 particles are dispersed uniformly in the matrix. The hardness of the composites increases gradually, and the bending strength and fracture toughness of the composites reach to the maximum value, respectively.展开更多
Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its mic...Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its microstructure and reinforced mechanism. According to SEM and calculation of thermal shock, the fractured surface of Al2O3-30%TiCN-0.2%Y2O3 composite is undulate. The residual strength of Al2O3-30%TiCN-0.2%Y2O3 is higher than Al2O3-30%TiCN at 200~800 ℃ after thermal shock. Cracks initiation resistance (R′)and cracks propagation resistance (R″″)of Al2O3-30%TiCN-0.2%Y2O3 composite increases 12% and 5% respectively compared with that of Al2O3-30%TiCN. It matches with experimental results. The addition of Y2O3 forms YAG that inhibits crystal growth, and increases fracture stress, fracture toughness, cracks initiation resistance and cracks propagation resistance. Therefore, thermal shock resistance increases. The fracture work of Al2O3-30%TiCN and Al2O3-30%TiCN-0.2%Y2O3 composites are 132 and 148 J·m-2 respectively.展开更多
Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 parti...Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 particle (Al2O3np) reinforced B4Cp/Al + Al2O3np composites were prepared by powder metallurgy method. The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al2O3np on the thermal neutron absorptivity of composites. The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties, microstructure and fracture morphology of B4Cp/Al composites. The results indicated that the neutron absorption properties of B4Cp/Al composites were not affected by the addition of nano-Al2O3 particles in the range of 1 wt%-15 wt%. The addition of Al2O3np can obviously reduce the grain size of B4Cp/Al matrix metals thus improve the tensile strength of the composites. The addition threshold of Al2O3np is about 2.5 wt%. Both B4Cp and Al2O3np change the fracture characteristics of the composites from toughness to brittleness, and the latter is more important.展开更多
ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that b...ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that both the UTS and the hardness are improved and the impact toughness is decreased with the increase of the volume fraction of fibers (Vf). After Ce is added ,UTS (Vf>15%) and the hardness are improved at room temperature because of the modification of Ce, but the impact toughness and UTS at elevated temperature are lowered.The filtered action of the fiber preform results in that the influence of the amount of Ce added from 0. 1 wt% to 0. 5 wt% on the mechanical properties of the composites can be ignored.展开更多
Nanoparticles and microparticles reinforced Al matrix composites were fabricated by spark plasma sintering, and the microstructure and tribological properties were investigated systemically. The nano-Al2O3 particle an...Nanoparticles and microparticles reinforced Al matrix composites were fabricated by spark plasma sintering, and the microstructure and tribological properties were investigated systemically. The nano-Al2O3 particle and micro-Al2O3 particle uniformly dispersed in Al matrix composites. The introduction of nanoparticles is beneficial to the decrease of friction coefficient and wear rate, while microparticles are responsible to the high friction coefficient, resulting in the abrasive wear. With the introduction of both nanoparticles and microparticles, their synergic effect will lead to the variation of tribological behavior.展开更多
Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperatu...Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperature, and coupled with appropriate pseudo HIP process, dense TiAl/Al 2O 3 composites with density as high as 97% of the theoretical value can be produced, and points out. Microstructure observation shows in situ formed Al 2O 3 particles are of an average size smaller than one micron, and the hardness of TiAl matrix is enhanced by introduction of these particles.展开更多
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.
文摘The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
基金Project(2012MS0801)supported by the Natural Science Foundation of Inner Mongolia,China
文摘Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.
基金This work was supported by the National Natural Science Foundation of China (No. 50432010, 50372037).
文摘In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters.
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the National Science Foundation of Jiangxi Province,China。
文摘The effects of hot extrusion and addition of Al_(2)O_(3p) on both microstructure and tribological behavior of 7075 composites were investigated via optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and transmission electron microscopy(TEM).The experimental consequences reveal that the optimal addition of Al_(2)O_(3p) was 2 wt%.After hot extrusion,the Mg(Zn,Cu,Al)2 phases partially dissolve into the matrix and generate many uniformly distributed aging precipitation particles,the Al_(7)Cu_(2)Fe phases are squeezed and broken,and the Al_(2)O_(3p) become uniform distribution.The microhardness of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites reaches HV 170.34,increased by 41.5%than as-cast composites.The wear rate of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites is further lower than that of as-cast composites under the same condition.SEM-EDS analyses reveal that the reinforced wear resistance of composites can put down to the protective effect of the Al_(2)O_(3p) reinforced transition layer.After hot extrusion,the transition layer becomes stable,which determines the reinforced wear resistance of the as-extruded composites.
基金Project(2007AA03Z548) supported by High-Tech Research and Development Program of ChinaProject(50971066) supported by the National Natural Science Foundation of ChinaProject(1283000349) supported by the Jiangsu University Research Fund for Advanced Scholars,China
文摘Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles as well as the microstructures,mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and in situ tensile tests.The results indicate that with the pulsed magnetic field assistance,the morphologies of the in situ particles are mainly with ball-shape,the sizes are in nanometer scale and the distributions in the matrix are uniform.The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.These are due to the strong vibration induced by the applied magnetic field in the aluminum melt,which in turn,accelerates the melt reactions.The effects of the magnetic field on the above contributions are discussed in detail.
文摘Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed.
基金the National Key Research and Development Program(2019YFB2006500)National Natural Science Foundation of China(51404082).
文摘In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantly refined and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2o3 particulates,the high-density dislocation zone is formed around nano-Al2o3p and the particle deformation zone is formed near micron-ABOap.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2o3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantly improving the yield strength and tensile strength of Al2O3p/AZ31 composites.
文摘The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics analyses show that the chemical reactions are 3Cu 2O+2Al=6Cu+Al 2O 3 or 3CuO+2Al=3Cu+Al 2O 3. A related equilibrium diagram was drawn. The experiments and investigation show that the formation rate of Al 2O 3 was controlled by the diffusion of oxygen in matrix.
基金Funded by National Natural Science Foundation of China(No.51265019)
文摘To improve the mechanical properties of alumina particulates reinforced steel matrix composite, Ti powder was added into the alumina preform, a 5140 steel matrix composite was fabricated by squeeze casting, and the influences of Ti powder on the microstructure, hardness and bending strength of the composite were investigated, compared with the composite without adding Ti powder. Applied Ti powder and alumina particulates were 10-25 μm and 100-180 μm in size, respectively. Both composites were successfully fabricated, however Ti powder addition increased the infiltration thickness of the composite. In the Ti contained composite, a TiC film in micron scale is formed on the surface of alumina particles, many TiC aggregates are dispersed in the steel matrix without obvious remaining Ti powder. The hardness and the three-point bending strength of the composite reach 49.5 HRC and 1 018 MPa, respectively, which are 17.9% and 52.4% higher than those of the composite in the absence of Ti addition. Fracture morphology shows that the debonding of alumina particulates is eliminated for the composite in the presence of Ti addition. Sessile drop test shows the average wetting angle between 5140 steel and that of Ti coated Al2O3 is about 82.15°, much lower than the wetting angle 150° between steel and pure Al2O3. Therefore, the increase in the mechanical properties of the composite is attributed to the improvement of Al2O3 p/steel interface wetting and bonding by adding Ti powder in the preform.
基金supported by the Special Program for Education Bureau of Shaanxi Province, China(Grant No.08JK240)the Breeding Program for Provincial Level Key Research Base of Shaanxi University of Technology, China (Grant No.SLGJD0806)Scientific Research Start up Program for Introduced Talents of Shaanxi University of Technology, China (Grant No.SLGQD0751).
文摘In-situ Al2O3/TiAl composites were fabricated by pressure-assisted exothermic dispersion (PAXD) method from elemental powder mixtures of Ti, Al, TiO2, and Nb2O5. The microstructures and mechanical properties of the as-sintered composites are investigated. The results show that the as-sintered products consist of γ-TiAl, α2-Ti3Al, Al2O3, and NbAl3 phases. Microstructure analysis indicates that Al2O3 particles tend to disperse on the grain boundaries. Application of a moderate pressure of 35 MPa at 1200℃ yields Al2O3/TiAl composites with fine Al2O3 reinforcement and a discontinuous network linking by Al2O3 particles. The aluminide component has a fine submicron γ +α2 lamellar microstructure. With increasing Nb2O5 content, Al2O3 particles are dispersed uniformly in the matrix. The hardness of the composites increases gradually, and the bending strength and fracture toughness of the composites reach to the maximum value, respectively.
文摘Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its microstructure and reinforced mechanism. According to SEM and calculation of thermal shock, the fractured surface of Al2O3-30%TiCN-0.2%Y2O3 composite is undulate. The residual strength of Al2O3-30%TiCN-0.2%Y2O3 is higher than Al2O3-30%TiCN at 200~800 ℃ after thermal shock. Cracks initiation resistance (R′)and cracks propagation resistance (R″″)of Al2O3-30%TiCN-0.2%Y2O3 composite increases 12% and 5% respectively compared with that of Al2O3-30%TiCN. It matches with experimental results. The addition of Y2O3 forms YAG that inhibits crystal growth, and increases fracture stress, fracture toughness, cracks initiation resistance and cracks propagation resistance. Therefore, thermal shock resistance increases. The fracture work of Al2O3-30%TiCN and Al2O3-30%TiCN-0.2%Y2O3 composites are 132 and 148 J·m-2 respectively.
基金Funded by Natural National Science Foundation of China(NSFC)(No.11305149)National High-Tech R&D Program(863 Program)(No.2013AA030704)。
文摘Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 particle (Al2O3np) reinforced B4Cp/Al + Al2O3np composites were prepared by powder metallurgy method. The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al2O3np on the thermal neutron absorptivity of composites. The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties, microstructure and fracture morphology of B4Cp/Al composites. The results indicated that the neutron absorption properties of B4Cp/Al composites were not affected by the addition of nano-Al2O3 particles in the range of 1 wt%-15 wt%. The addition of Al2O3np can obviously reduce the grain size of B4Cp/Al matrix metals thus improve the tensile strength of the composites. The addition threshold of Al2O3np is about 2.5 wt%. Both B4Cp and Al2O3np change the fracture characteristics of the composites from toughness to brittleness, and the latter is more important.
文摘ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that both the UTS and the hardness are improved and the impact toughness is decreased with the increase of the volume fraction of fibers (Vf). After Ce is added ,UTS (Vf>15%) and the hardness are improved at room temperature because of the modification of Ce, but the impact toughness and UTS at elevated temperature are lowered.The filtered action of the fiber preform results in that the influence of the amount of Ce added from 0. 1 wt% to 0. 5 wt% on the mechanical properties of the composites can be ignored.
基金Funded by the National Key R&D Program of China(No.2017YFB1103500)National Science and Technology Major Project(No.2017-VI-0007-0077)the National Natural Science Foundation of China(Nos.51632007,51672218)
文摘Nanoparticles and microparticles reinforced Al matrix composites were fabricated by spark plasma sintering, and the microstructure and tribological properties were investigated systemically. The nano-Al2O3 particle and micro-Al2O3 particle uniformly dispersed in Al matrix composites. The introduction of nanoparticles is beneficial to the decrease of friction coefficient and wear rate, while microparticles are responsible to the high friction coefficient, resulting in the abrasive wear. With the introduction of both nanoparticles and microparticles, their synergic effect will lead to the variation of tribological behavior.
文摘Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperature, and coupled with appropriate pseudo HIP process, dense TiAl/Al 2O 3 composites with density as high as 97% of the theoretical value can be produced, and points out. Microstructure observation shows in situ formed Al 2O 3 particles are of an average size smaller than one micron, and the hardness of TiAl matrix is enhanced by introduction of these particles.