Grinding requires high specific energy which develops high temperatures at wheel work piece interface. High temperatures impair work piece quality by inducing tensile residual stress, burn, and micro cracks. Control o...Grinding requires high specific energy which develops high temperatures at wheel work piece interface. High temperatures impair work piece quality by inducing tensile residual stress, burn, and micro cracks. Control of grinding temperature is achieved by providing effective cooling and lubrication. Conventional flood cooling is often ineffective due to enormous heat generation and improper heat dissipation. This paper deals with an investigation on using TRIM E709 emulsifier with Al_2O_3 nanoparticles to reduce the heat generated at grinding zone. An experimental setup has been developed for this and detailed comparison has been done with dry, TRIM E709 emulsifier and TRIM E709 emulsifier with Al_2O_3 nanoparticles in grinding EN-31 steel in terms of temperature distribution and surface finish. Results shows that surface roughness and heat penetration were decreased with addition of Al_2O_3 nanoparticles.展开更多
This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, t...This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites.展开更多
Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobili...Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid(DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.展开更多
文摘Grinding requires high specific energy which develops high temperatures at wheel work piece interface. High temperatures impair work piece quality by inducing tensile residual stress, burn, and micro cracks. Control of grinding temperature is achieved by providing effective cooling and lubrication. Conventional flood cooling is often ineffective due to enormous heat generation and improper heat dissipation. This paper deals with an investigation on using TRIM E709 emulsifier with Al_2O_3 nanoparticles to reduce the heat generated at grinding zone. An experimental setup has been developed for this and detailed comparison has been done with dry, TRIM E709 emulsifier and TRIM E709 emulsifier with Al_2O_3 nanoparticles in grinding EN-31 steel in terms of temperature distribution and surface finish. Results shows that surface roughness and heat penetration were decreased with addition of Al_2O_3 nanoparticles.
文摘This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites.
基金supported by the National Key Research and Development Programme of China(2022YFA1404704 and 2020YFA0406104)the National Natural Science Foundation of China(52002168,12022403,11874211,62134009,62121005,and 61735008)+2 种基金Excellent Research Programme of Nanjing University(ZYJH005)the Fundamental Research Funds for the Central Universities(021314380184,021314380208,021314380190,021314380140,and 021314380150)State Key Laboratory of New Textile Materials and Advanced Processing Technologies(Wuhan Textile University,No.FZ2022011).
基金supported by the Nature Science Foundation of Heilongjiang Province (No. B201410)the Postdoctoral Foundation Project of Heilongjiang Province (No. LBH-Z13128)+3 种基金the Science and Technology Research Program of Education Bureau of Heilongjiang Province (No. 12531206)the Special Scientific Research Projects of Harbin Normal University (12XQXG02)the National Nature Science Foundation of China (No. 41030743)the National Nature Science Foundation of China (No. 42171217)
文摘Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid(DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.