An accurate circuit model of the microwave small signal characteristics of AlGaAs/GaAs HBT (heterojunction bipolar transistor) is extremely useful for microwave linear applications of the device. This paper presents ...An accurate circuit model of the microwave small signal characteristics of AlGaAs/GaAs HBT (heterojunction bipolar transistor) is extremely useful for microwave linear applications of the device. This paper presents a small signal AlGaAs/GaAs HBT equivalent circuit, based on the DC characteristics and S parameter of the device. Using Volterra series, we have calculated the third order intermodulation distortion in a linear AlGaAs/GaAs HBT amplifier. The calculations are well concordant with the measurements from two tone signals intermodulation distortion test, and its excellent third order intermodulation performance shows that AlGaAs/GaAs HBT is a very attractive candidate for linear amplification.展开更多
GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nan...GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.展开更多
量子阱红外探测器(Quantum well infrared photodetector,QWIP)已经经历了20多年的深入研究,各种QWIP器件,包括量子阱红外探测器焦平面阵列(FPA)的研制也已经相当成熟。但是在国内,受制于整体工业水平,QWIP焦平面阵列器件的研制仍然处...量子阱红外探测器(Quantum well infrared photodetector,QWIP)已经经历了20多年的深入研究,各种QWIP器件,包括量子阱红外探测器焦平面阵列(FPA)的研制也已经相当成熟。但是在国内,受制于整体工业水平,QWIP焦平面阵列器件的研制仍然处于起步阶段。研制了基于GaAs/AlxGa1-xAs材料、峰值响应波长为9.9μm的长波320×256 n型QWIP焦平面阵列器件,其像元中心距25μm,光敏元面积为22μm×22μm。GaAs衬底减薄后的QWIP焦平面阵列,与Si基CMOS读出电路(ROIC)通过铟柱倒焊互连,并且在65 K工作温度下进行了室温环境目标成像。该焦平面器件的规模和成像质量相比之前国内报道的结果都有较大提高。焦平面平均峰值探测率达1.5×1010cm.Hz1/2/W。展开更多
文摘An accurate circuit model of the microwave small signal characteristics of AlGaAs/GaAs HBT (heterojunction bipolar transistor) is extremely useful for microwave linear applications of the device. This paper presents a small signal AlGaAs/GaAs HBT equivalent circuit, based on the DC characteristics and S parameter of the device. Using Volterra series, we have calculated the third order intermodulation distortion in a linear AlGaAs/GaAs HBT amplifier. The calculations are well concordant with the measurements from two tone signals intermodulation distortion test, and its excellent third order intermodulation performance shows that AlGaAs/GaAs HBT is a very attractive candidate for linear amplification.
文摘GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.