In this paper, we present a 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor(DH HEMT) with a gate-drain spacing L_(GD)= 18.8 μm. Compared with the regular DH HEMT, our circular...In this paper, we present a 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor(DH HEMT) with a gate-drain spacing L_(GD)= 18.8 μm. Compared with the regular DH HEMT, our circular structure has a high average breakdown electric-field strength that increases from 0.42 MV/cm to 0.96 MV/cm. The power figure of meritV_(BR)~2/RON for the circular HEMT is as high as 1.03 ×10~9 V^2·Ω^(-1)·cm^(-2). The divergence of electric field lines at the gate edge and no edge effect account for the breakdown enhancement capability of the circular structure. Experiments and analysis indicate that the circular structure is an effective method to modulate the electric field.展开更多
Al0.2Ga0.8N/GaN/Al_(0.2)Ga_(0.8)N multilayer structures and GaN monolayer structures with AIN as the buffer layers were grown on Si substrates by metal-organic chemical vapour deposition. The photocurrent responses of...Al0.2Ga0.8N/GaN/Al_(0.2)Ga_(0.8)N multilayer structures and GaN monolayer structures with AIN as the buffer layers were grown on Si substrates by metal-organic chemical vapour deposition. The photocurrent responses of these structures were measured and analysed. The multilayer structures showed a high response in a narrow range of wavelengths. The peak wavelength is located at 365 nm at which the responsivity is as high as 24 A/W under 5.5 V bias;this is much higher than the GaN monolayer structure. This high responsivity results mainly from the high polarization electric field in the GaN layer of the Al_(0.2)Ga_(0.8)N/GaN/Al_(0.2)Ga_(0.8)N heterostructure.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improv...In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance.The breakdown voltage(BV)is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92μm.A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V.The maximum oscillation frequency(f_(max))and unity current gain cut-off frequency(f_(t))of the AlGaN/GaN HEMTs exceed 30 and 20 GHz,respectively.The results demonstrate the potential of AlGaN/GaN HEMTs on freestanding GaN substrates for microwave power applications.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400100)the National Natural Science Foundation of China(Grant Nos.11435010,61474086,and 61804125)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2016ZDJC-02)
文摘In this paper, we present a 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor(DH HEMT) with a gate-drain spacing L_(GD)= 18.8 μm. Compared with the regular DH HEMT, our circular structure has a high average breakdown electric-field strength that increases from 0.42 MV/cm to 0.96 MV/cm. The power figure of meritV_(BR)~2/RON for the circular HEMT is as high as 1.03 ×10~9 V^2·Ω^(-1)·cm^(-2). The divergence of electric field lines at the gate edge and no edge effect account for the breakdown enhancement capability of the circular structure. Experiments and analysis indicate that the circular structure is an effective method to modulate the electric field.
基金Supported by the Special Funds for Major State Basic Research Project of China No.G20000683the National Natural Science Foundation of China under Grant Nos.69987001,69636010,69976014,69806006。
文摘Al0.2Ga0.8N/GaN/Al_(0.2)Ga_(0.8)N multilayer structures and GaN monolayer structures with AIN as the buffer layers were grown on Si substrates by metal-organic chemical vapour deposition. The photocurrent responses of these structures were measured and analysed. The multilayer structures showed a high response in a narrow range of wavelengths. The peak wavelength is located at 365 nm at which the responsivity is as high as 24 A/W under 5.5 V bias;this is much higher than the GaN monolayer structure. This high responsivity results mainly from the high polarization electric field in the GaN layer of the Al_(0.2)Ga_(0.8)N/GaN/Al_(0.2)Ga_(0.8)N heterostructure.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
文摘In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance.The breakdown voltage(BV)is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92μm.A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V.The maximum oscillation frequency(f_(max))and unity current gain cut-off frequency(f_(t))of the AlGaN/GaN HEMTs exceed 30 and 20 GHz,respectively.The results demonstrate the potential of AlGaN/GaN HEMTs on freestanding GaN substrates for microwave power applications.