It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN...It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schroedinger- Poisson equations, theoretical investigation is carried out about the effects of donor density (0-1×10^19 cm^-3) and temperature (50-500 K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective △Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective △Ec. The Capacitance-Voltage (C - V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.展开更多
Aluminum nitride films were prepared by mid-frequency magnetron sputtering on Si (111) substrate. The grown films were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron...Aluminum nitride films were prepared by mid-frequency magnetron sputtering on Si (111) substrate. The grown films were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS) to obtain the structural and the chemical information. The polycrystalline thin films were in a hexagonal wurtzite structure having a (002) preferred orientation, along which the columnar grain structure was found. XPS study revealed the presence of oxygen and carbon contaminations, as well as the Al-rich nature of the film. Anomalous C-V characteristics of Al/AlN/n-Si capacitors were studied. The measured C-V curves show rolloffs in the accumulation region and voltage stresses cause both horizontal and vertical shifts of the C-V curves. These anomalous behaviors are mainly due to the large current conduction and the charge trapping in the Al-rich AlN layer.展开更多
文摘It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schroedinger- Poisson equations, theoretical investigation is carried out about the effects of donor density (0-1×10^19 cm^-3) and temperature (50-500 K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective △Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective △Ec. The Capacitance-Voltage (C - V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.
基金Shenzhen Science and Technology Program(JCYJ20210324141607019)Natural Science Foundation of Shandong Province(ZR2022QF044)National Natural Science Foundation of China(52202265)。
文摘Aluminum nitride films were prepared by mid-frequency magnetron sputtering on Si (111) substrate. The grown films were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS) to obtain the structural and the chemical information. The polycrystalline thin films were in a hexagonal wurtzite structure having a (002) preferred orientation, along which the columnar grain structure was found. XPS study revealed the presence of oxygen and carbon contaminations, as well as the Al-rich nature of the film. Anomalous C-V characteristics of Al/AlN/n-Si capacitors were studied. The measured C-V curves show rolloffs in the accumulation region and voltage stresses cause both horizontal and vertical shifts of the C-V curves. These anomalous behaviors are mainly due to the large current conduction and the charge trapping in the Al-rich AlN layer.