期刊文献+
共找到4,176篇文章
< 1 2 209 >
每页显示 20 50 100
High-performance grinding of ceramic matrix composites
1
作者 Jingfei Yin Jiuhua Xu Honghua Su 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期45-55,共11页
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide... Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application. 展开更多
关键词 ceramic matrix composite GRINDING Surfacefinish Subsurface damage Fiber breakage
下载PDF
Effects of Co_(2)O_(3)Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage
2
作者 ZHOU Yang WU Jianfeng +3 位作者 TIAN Kezhong XU Xiaohong MA Sitong LIU Shaoheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1269-1277,共9页
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ... SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples. 展开更多
关键词 SiC composite ceramics Co_(2)O_(3) microstructure solar absorption thermal storage density
下载PDF
Preparation and properties of porous silicon carbide ceramics through coat-mix and composite additives process 被引量:2
3
作者 赵宏生 刘中国 +3 位作者 杨阳 刘小雪 张凯红 李自强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1329-1334,共6页
The core-shell structure silicon-resin precursor powders were synthesized through coat-mix process and addition of Al2O3-SiO2-Y2O3 composite additives.A series of porous silicon carbide ceramics were produced after mo... The core-shell structure silicon-resin precursor powders were synthesized through coat-mix process and addition of Al2O3-SiO2-Y2O3 composite additives.A series of porous silicon carbide ceramics were produced after molding,carbonization and sintering.The phase,morphology,porosity,thermal conductivity,thermal expansion coefficient,and thermal shock resistance were analyzed.The results show that porous silicon carbide ceramics can be produced at low temperature.The grain size of porous silicon carbide ceramic is small,and the thermal conductivity is enhanced significantly.Composite additives also improve the thermal shock resistance of porous ceramics.The bending strength loss rate after 30 times of thermal shock test of the porous ceramics which were added Al2O3-SiO2-Y2O3 and sintered at 1 650 ℃ is only 6.5%.Moreover,the pore inside of the sample is smooth,and the pore size distribution is uniform.Composite additives make little effect on the thermal expansion coefficient of the porous silicon carbide ceramics. 展开更多
关键词 silicon carbide porous ceramic coat-mix composite additives
下载PDF
Evaluation of Dielectric Properties of CCTO-BT/Epoxy Composites for Electronic Applications
4
作者 Swagatika Mishra Punyapriya Mishra +3 位作者 Punyatoya Mishra Dinesh Kumar Mishra Krushna Prasad Shadangi Deepak Kumar Mohapatra 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期69-77,共9页
In the current study,the calcium copper titanate(CCTO)/epoxy,barium titanate(BT)/epoxy and CCTO-BT/epoxy composite samples with variable volume fractions of CCTO and BT are fabricated using hand lay-up and compression... In the current study,the calcium copper titanate(CCTO)/epoxy,barium titanate(BT)/epoxy and CCTO-BT/epoxy composite samples with variable volume fractions of CCTO and BT are fabricated using hand lay-up and compression moulding process. The composite samples are characterized for the frequency dependence on dielectric properties,conductivity,impedance spectroscopy and electrical modulus.X-ray diffraction(XRD)representation of CCTO-BT/epoxy composite samples confirmed the presence of both CCTO and BT ceramic samples separately. The dielectric characteristics of hybrid CCTO-BT/epoxy composite samples with CCTO∶BT ratio of 40∶60, 60∶40,and 50∶50 was found relatively better than those of single ceramic filler reinforced epoxy composites. AC conductivity analysis shows improvement in the results of hybrid filler-filled CCTO-BT/epoxy composites in comparison with single filler-filled epoxy composite.50∶50 CCTO-BT/epoxy composite shows the best AC conductivity value of~ 2.2 ×10^(-5) ohm^(-1)·m^(-1) at a higher frequency of 1MHz. The impedance analysis confirms the higher insulating properties for hybrid 40∶60 and 60∶40 CCTO-BT/epoxy composites with respect to the single and other hybrid ceramic epoxy composites. The analysis suggests the hybrid CCTO-BT/epoxy composites to be adopted as a potential dielectric material for energy storage devices and other electronic applications. 展开更多
关键词 ceramic filler dielectric characterization hybrid composite AC conductivity impedance analysis
下载PDF
Oxidation behavior of Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(x)C(M=Ti,Zr,Hf,Nb,Ta) composite ceramic at high temperature
5
作者 徐帅 王韬 +7 位作者 王新刚 吴璐 方忠强 葛芳芳 蒙萱 廖庆 魏金春 李炳生 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期629-637,共9页
Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M... Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic. 展开更多
关键词 ceramic composites oxidation oxide surface microstructure
下载PDF
Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics 被引量:11
6
作者 梁金生 梁广川 +3 位作者 祁洪飞 吴子钊 冀志江 金宗哲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第3期436-439,共4页
Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating w... Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate. 展开更多
关键词 ceramics composite materials phosphate antibacterial ceramic nuclear magnetic resonance (NMR) activated water oxygen concentrations rare earths
下载PDF
Dielectric and piezoelectric properties of(Li,Ce) modified NaBi_5Ti_5O_(18) composite ceramics 被引量:7
7
作者 马磊 赵琨 +3 位作者 李吉夏 吴琪 赵明磊 王春雷 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期496-500,共5页
Nominal (Li0.5Ce0.5)x(Na0.5Bi0.5)(1-x)Na0.5Bi4.5Ti5O18 composite ceramics were fabricated using conventional solid-state reaction method. The coexistence of bismuth layer-structured phase and perovskite phase wa... Nominal (Li0.5Ce0.5)x(Na0.5Bi0.5)(1-x)Na0.5Bi4.5Ti5O18 composite ceramics were fabricated using conventional solid-state reaction method. The coexistence of bismuth layer-structured phase and perovskite phase was determined in these ceramics using XRD technique. At room temperature, the x=0.11 sample showed the largest piezoelectric constant, d33, of about 26.5 pC/N and the largest electromechanical coupling factor, kt, of about 30%. Even after annealing at 500 ℃, the value of d33 was still about 19 pC/N, in x=0.08-0.11 samples. Moreover these composite ceramics showed low temperature coefficients of dielectric constant and high electrical resistivity in the temperature region of 450-550 ℃. These results indicated that (Li, Ce) modified NaBi5Ti5O18 composite ceramics were promising piezoelectric materials for high-temperature applications. 展开更多
关键词 FERROELECTRICS composite ceramics dielectric properties piezoelectric properties electrical resistivity rare earths
下载PDF
Thermal shock fatigue behavior of TiC/Al_2O_3 composite ceramics 被引量:6
8
作者 SI Tingzhi LIU Ning +1 位作者 ZHANG Qing' an YOU Xianqing 《Rare Metals》 SCIE EI CAS CSCD 2008年第3期308-314,共7页
The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was disc... The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (Ⅳ) on fatigue crack growth (Δa). The mechanical properties and thermal fatigue resistance of TiC/Al203 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites. 展开更多
关键词 ceramic matrix composites TiC/Al2O3 composites thermal shock fatigue fatigue behavior fatigue resistance
下载PDF
Dielectric properties of spark plasma sintered AlN/SiC composite ceramics 被引量:4
9
作者 Peng Gao Cheng-chang Jia +3 位作者 Wen-bin Cao Cong-cong Wang Dong Liang Guo-liang Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期589-594,共6页
In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a se... In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz. 展开更多
关键词 ceramic materials composite materials aluminum nitride silicon carbide spark plasma sintering dielectric losses
下载PDF
Effect of MnO2 on Properties of SiC-mullite Composite Ceramics for Solar Sensible Thermal Storage 被引量:3
10
作者 徐晓虹 lao xinbin +3 位作者 wu jianfeng zhang yaxiang xu xiaoyang li kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期491-495,共5页
For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, a... For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, andalusite, a-Al2O3 as the starting materials with non-contact graphite-buried sintering method. Phase composition and microstructure of the composites were investigated by XRD and SEM, and the effect of MnOz on the properties of SiC composites was studied. Results indicated that samples SM1 with 0.2 wt% MnO2 addition achieved the optimum properties: bending strength of 70.96 MPa, heat capacity of 1.02 J.(g.K)-1, thermal conductivity of 9.05 W-(m.K)-1. Proper addition of MnO2 was found to weaken the volume effect of the composites and improve the thermal shock resistance with an increased rate of 27.84% for bending strength after 30 cycles of thermal shock (air cooling from 1 100 ℃ to RT). Key words: SiC-mullite composite ceramics; MnO2; solar sensible thermal storage; non-contact graphite-buried sintering; thermal shock resistance 展开更多
关键词 SiC-mullite composite ceramics Mn02 solar sensible thermal storage non-contact graphite-buried sintering thermal shock resistance
下载PDF
Effect of Nano-ZrO_2 on Microstructure and Thermal Shock Behaviour of Al_2O_3/SiC Composite Ceramics Used in Solar Thermal Power 被引量:2
11
作者 徐晓虹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期285-289,共5页
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ... The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power. 展开更多
关键词 AL2O3 NANO-ZRO2 transformation toughening thermal shock resistance composite ceramics solar thermal power
下载PDF
Preparation of ZrN(ZrON)-SiAION Composite Ceramics via a Pressureless Sintering Process 被引量:2
12
作者 MA Beiyue LI Ying +1 位作者 LU Zhongxin YU Jingkun 《China's Refractories》 CAS 2014年第4期45-48,共4页
ZrN-SiAlON composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash (≤74 μm),zircon (≤ 44 μm) and active carbon as starting materials.The processed ... ZrN-SiAlON composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash (≤74 μm),zircon (≤ 44 μm) and active carbon as starting materials.The processed ZrN-SiAlON composite micropowders were mixed with polyvinyl alcohol as binder to prepare ZrN (ZrON)-SiAlON composite ceramics by carbon-embedded pressureless firing at 1 450,1 500 and 1 550 ℃ for 1 h,respectively.Influences of firing temperature on the phase compositions,microstructure and sintering properties of the ceramics were investigated.The results show that:(1) β-SiAlON based composite ceramics with different compositions can be prepared by controlling firing temperature,and the main crystalline phases of the specimen fired at 1 550 ℃ for 1 h involve ZrN,ZrON and β-SiAlON (z =2,Si4Al2O2N6); (2) ZrN (ZrON),β-SiAlON and a Fe-Si based compound can be observed in the microstructures of the specimens fired at different temperatures.ZrN (ZrON) particles distribute homogeneously in the β-SiAlON matrix; (3) raising firing temperature can increase the shrinkage ratio of the ceramics,and the volume shrinkage ratio increases from 19.4% to 40.3% when the firing temperature rises from 1 450 to 1 550 ℃. 展开更多
关键词 ZrN (ZrON)-SiAlON composite ceramics pressureless sintering process fly ash ZIRCON
下载PDF
GRAIN GROWING DYNAMICS OF MgO-CaO COMPOSITE CERAMICS 被引量:1
13
作者 T.M. Jia and G. Y. An (Harbin University of Technology, Harbin 150001, China) S.X. Che (Liaoning Institute of Technology, Jinzhou 121000, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第6期1155-1158,共4页
The grain growing dynamics including the growing process, the growing exponent and the growing activation energy is obtained for the MgO-CaO composite ceramics with the additions of Fe2O3, CeO2 and/or ZrO2 as fluxes b... The grain growing dynamics including the growing process, the growing exponent and the growing activation energy is obtained for the MgO-CaO composite ceramics with the additions of Fe2O3, CeO2 and/or ZrO2 as fluxes by measuring the size of grains with the method of Straight Line Across. The results show that all of the additions, in which Fe2O3 is the strongest, have notable effects on the grain growing dynamics by reducing the growing activation energy and promoting the grain growing. The research gives a good reference for the additions of fluxes to the matrix of ceramic filter. 展开更多
关键词 MgO-CaO composite ceramics growing exponent activation energy
下载PDF
Mechanical properties and plasma erosion resistance of BN_p/Al_2O_3-SiO_2 composite ceramics 被引量:3
14
作者 段小明 贾德昌 +5 位作者 周玉 杨治华 王玉金 任凤琴 于达仁 丁永杰 《Journal of Central South University》 SCIE EI CAS 2013年第6期1462-1468,共7页
BNp/Al2O3-SiO2 system ceramic matrix composites with different volume fractions (10%-60%) of hexagonal BN particulates (BNp) were prepared by hot-press sintering technique. Phase components, microstructure, mechan... BNp/Al2O3-SiO2 system ceramic matrix composites with different volume fractions (10%-60%) of hexagonal BN particulates (BNp) were prepared by hot-press sintering technique. Phase components, microstructure, mechanical properties and plasma erosion resistance were also investigated. With the increase of h-BNp content, relative density and Vickers' hardness of the composite ceramics decrease, while the flexural strength, elastic modulus and fracture toughness increase and then decrease. The plasma erosion resistance linearly deteriorated with the increase of BNp content which is mainly determined by the density, crystal structure and atomic number of the elements. 展开更多
关键词 BNp/Al2O3-SiO2 composite ceramics MICROSTRUCTURES mechanical properties plasma erosion resistance
下载PDF
Investigation of melt-growth alumina/aluminum titanate composite ceramics prepared by directed energy deposition 被引量:5
15
作者 Yunfei Huang Dongjiang Wu +2 位作者 Dake Zhao Fangyong Niu Guangyi Ma 《International Journal of Extreme Manufacturing》 EI 2021年第3期49-62,共14页
Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics with low thermal expansion properties are promising for the rapid preparation of large-scale and complex components by directed energy deposition-laser based(DED-LB)te... Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics with low thermal expansion properties are promising for the rapid preparation of large-scale and complex components by directed energy deposition-laser based(DED-LB)technology.However,the wider application of DED-LB technology is limited due to the inadequate understanding of process conditions.The shaping quality,microstructure,and mechanical properties of Al_(2)O_(3)/Al_(6)Ti_(2)O_(13)(6 mol%TiO_(2))composite ceramics were systematically investigated as a function of energy input in an extensive process window.On this basis,the formation mechanism of solidification defects and the evolution process of microstructure were revealed,and the optimized process parameters were determined.Results show that high energy input improves the fluidity of the molten pool and promotes the uniform distribution and full growth of constituent phases,thus,facilitating the elimination of solidification defects,such as pores and strip gaps.In addition,the microstructure size is strongly dependent on the energy input,increasing when the energy input increases.Moreover,the morphology of theα-Al_(2)O_(3) phase gradually transforms from cellular into cellular dendrite with increasing energy input due to changing solidification conditions.Under the comprehensive influence of solidification defects and microstructure size,the fracture toughness and flexural strength of Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics present a parabolic law behavior as the energy input increases.Optimal shaping quality and excellent mechanical properties are achieved at an energy input range of 0.36-0.54 W*min^(2) g^(-1) mm^(-1).Within this process window,the average microhardness,fracture toughness,and flexural strength of Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics are up to 1640 Hv,3.87 MPa m^(1/2),and 227 MPa,respectively.This study provides practical guidance for determining the process parameters of DED-LB of melt growth Al_(2)O_(3)/Al_(6)Ti_(2)O_(13) composite ceramics. 展开更多
关键词 additive manufacturing Al_(2)O_(3) composite ceramics microstructure mechanical properties
下载PDF
Mechanical Properties and Microstructure of Al_(2)O_(3)/SiC Composite Ceramics for Solar Heat Absorber 被引量:1
16
作者 WU Jianfeng ZHOU Yang +3 位作者 SUN Mengke XU Xiaohong TIAN Kezhong YU Jiaqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期615-623,共9页
Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is ... Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is studied.Experimental results show that the vickers hardness,wear resistance and thermal conductivity of the samples increase with the increase in the SiC content,and the hardness of the sample reaches 16.22 GPa,and thermal conductivity of the sample reaches 25.41 W/(m.K)at room temperature when the SiC content is 20 wt%(B5)and the sintering temperature is at 1640℃.Higher hardness means higher scour resistance,and it indicates that the B5 material is expected to be used for the solar heat absorber of third generation solar thermal generation.The results indicate the mechanism of improving mechanical properties of Al_(2)O_(3)/SiC composite ceramics:SiC plays a role in grain refinement that the grain of SiC inhibits the grain growth of Al_(2)O_(3),while the addition of SiC changes the fracture mode from the intergranular to the intergranular-transgranular. 展开更多
关键词 Al_(2)O_(3)/SiC composite ceramics HARDNESS thermal conductivity solar heat absorption material
下载PDF
Formation and Dielectric Properties of Mn-Doped BSTN Composite Ceramics
17
作者 周宗辉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期1-3,共3页
The influence of Mn doping on the formation and dielectric properties of 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 (BSTN) composite ceramics were investigated. The Mn was doped according to the formula 0.7BaO&... The influence of Mn doping on the formation and dielectric properties of 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 (BSTN) composite ceramics were investigated. The Mn was doped according to the formula 0.7BaO·0.3SrO·(0.7-z)TiO2·0.3Nb2O5·zMnO2 (BSTNM). The results show the two phases, perovskite phase BST and the tungsten bronze phase SBN, are coexistence in BSTNM as they are in BSTN composite ceramics. The Mn ions doped in BSTN substitute for Nb5+ ions in the tungsten bronze phase, and then, the Nb5+ ions substitute for Ti4+ ions in the perovskite phase. With the increasing of Mn dopant, the content of the perovskite phase increases while that of the tungsten bronze phase decreases, and the grain size of the perovskite phase decreases. As well as, the phase transition temperature of tungsten bronze phase increases with value z increasing from 0 to about 0.05. 展开更多
关键词 MN BSTN composite ceramics FORMATION Dielectric properties
下载PDF
Surface Infiltrating Composite of Fe-base Metal and Ceramics
18
作者 石功奇 丁培道 +1 位作者 周守则 潘复生 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第3期222-224,共3页
1.IntroductionMetal matrix composites consist of afamily of advanced materials which mayhave attractive properties including highstrength,high specific modulus,lowcoefficient of thermal expansion,good wearresistance,a... 1.IntroductionMetal matrix composites consist of afamily of advanced materials which mayhave attractive properties including highstrength,high specific modulus,lowcoefficient of thermal expansion,good wearresistance,and attractive high temperature 展开更多
关键词 cast iron ceramics INFILTRATION composite layer
下载PDF
Characterization of Modified Sol-Gel Derived xSrO·(1-x)BaO·0.5Nb_2O_5·0.5TiO_2 Composite Ceramics
19
作者 吴泽 彭娟 +3 位作者 单连伟 董丽敏 韩志东 张显友 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期436-439,共4页
Strontium barium niobate/barium strontium titanate composite ceramics of xSrO·(1-x)BaO·0.5Nb2O5·0.5TiO2 (BSTN in short) with a range of Sr/Ba ratios were fabricated using a modified sol-gel method with ... Strontium barium niobate/barium strontium titanate composite ceramics of xSrO·(1-x)BaO·0.5Nb2O5·0.5TiO2 (BSTN in short) with a range of Sr/Ba ratios were fabricated using a modified sol-gel method with Nb2O5 fine powders suspended in the barium strontium titanate (BST in short) sol solution. Powders obtained from dried gels were calcined at 800 ℃ for 3 h. After preparing bulk ceramics from these powders by sintering at 1200 ℃ for 3 h, the tetragonal tungsten bronze(TTB) phase and perivoskite phase were co-present in compositions between 0.25≤x≤0.75, with the increasing of x value, the peaks of pervoskite phase shift to the high angle position slightly while no changes happened in the peak position of TTB phase. The peak intensity of both two phases were also changed. 展开更多
关键词 BSTN peroviskite phase tetragonal tungsten bronze phase composite ceramics
下载PDF
Synthesis of TiN/AlON composite ceramics
20
作者 Xidong Wang, Lichun Gao, Guobao Li, and Wenchao LiDepartment of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第1期49-53,共5页
The synthesis process of TiN/AlON composite ceramics was studied, the thermodynamics, mechanical properties and micro-structures of TiN/AlON have also been investigated. The TiN/AlON composite ceramics has been synthe... The synthesis process of TiN/AlON composite ceramics was studied, the thermodynamics, mechanical properties and micro-structures of TiN/AlON have also been investigated. The TiN/AlON composite ceramics has been synthesized by both hot-pressing and pressureless sintering. The characterizations of the material synthesized were analyzed with XRD (X-ray diffraction) and TEM (transmission electronic microscope). The density and toughness strength of TiN/AlON are 3.57g/cm3 and 4.74MPa.m1/2, respectively. The bending strength was measured at both room temperature and high temperatures and the results are 399 MPa (room temperature), 406 MPa (1 073 K), 417 MPa (1 273 K) and 323 MPa (1 573 K). Pattern Recognition (PR) and Artificial Neural Network (ANN) were used to optimize the parameters and to predict the expected values. A proper parameter for pressureless sintering of TiN/AlON has been obtained and testified, the parameters are temperature (1 978 K), AlN / (AlN + Al2O3) ratio (0.22), MgO (4.7%) and TiO2 (7.2%). 展开更多
关键词 SYNTHESIS TIN ALON composite ceramics
下载PDF
上一页 1 2 209 下一页 到第
使用帮助 返回顶部