The experimental and analytical approaches were taken to investigate the non-dendritic microstructure formation and evolution of AlSi9Cu3 alloy during rheocasting.The results show that the globular primary α(Al) part...The experimental and analytical approaches were taken to investigate the non-dendritic microstructure formation and evolution of AlSi9Cu3 alloy during rheocasting.The results show that the globular primary α(Al) particles free of entrapped eutectic form after rheocasting for 3 s,and could be morphologically stabilized during subsequent growth.The fine and globular particles underwent a coarsening process under quiescently continuous cooling in which the particle density decreases,the solid fraction increases,the average particle size increases with the increase of solidification time at a rate that closely followed the classical Ostwald ripening.展开更多
基金Project(50804023) supported by National Natural Science Foundation of ChinaProject(205084) supported by Ministry of Education Focused on Scientific and Technological Research
文摘The experimental and analytical approaches were taken to investigate the non-dendritic microstructure formation and evolution of AlSi9Cu3 alloy during rheocasting.The results show that the globular primary α(Al) particles free of entrapped eutectic form after rheocasting for 3 s,and could be morphologically stabilized during subsequent growth.The fine and globular particles underwent a coarsening process under quiescently continuous cooling in which the particle density decreases,the solid fraction increases,the average particle size increases with the increase of solidification time at a rate that closely followed the classical Ostwald ripening.