The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and h...The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and hardnessmeasurements)was combined with Thermo-Calc software simulation for the optimization of the alloy composition.It wasdetermined that the maximum hardening corresponded to the annealing at300?350°С,which was due to the precipitation of Al3Scnanoparticles with their further coarsening.The alloys falling into the phase region(Al)+Al4Ca+Al2Si2Ca have demonstrated asignificant hardening effect.The ternary eutectic(Al)+Al4Ca+Al2Si2Ca had a much finer microstructure as compared to the Al?Sieutectic,which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356type.Unlike commercial alloys of the A356type,the model alloy does not require quenching,as hardening particles are formed in thecourse of annealing of castings.展开更多
To explore the approaches of combined toughening and strengthening of the Al_3Ti-based L1_2 intermetallic alloys, multiphase Al_3Ti alloys formed by combining with reinforcement or by second phase precipitation are be...To explore the approaches of combined toughening and strengthening of the Al_3Ti-based L1_2 intermetallic alloys, multiphase Al_3Ti alloys formed by combining with reinforcement or by second phase precipitation are being studied. The interface reactions between Al_(66)Fe_9Ti_(25)matrix and SiC reinforcement were investigated. It is determined that SiC is chemically incompatible with the Al_(66)Fe_9Ti_(25)matrix, Al_2O_3 barrier coating on SiC by sol-gel process was developed to minimize the interfacial reactions. On the other hand, a new type of Al_3Ti-based alloy having a L1_2 matrix with second phase precipitation has been developed. The quaternary alloys based on Al_(66)Fe_9Ti_(25)and modified with Nb additions, consist of a L1_2 matrix and D0_(22) second phase in the annealed state ,but the second phase can be dissolved by solution treatment and precipitated during high temperature aging.展开更多
基金supported by Russian Science Foundation(Grant No.14-19-00632)
文摘The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and hardnessmeasurements)was combined with Thermo-Calc software simulation for the optimization of the alloy composition.It wasdetermined that the maximum hardening corresponded to the annealing at300?350°С,which was due to the precipitation of Al3Scnanoparticles with their further coarsening.The alloys falling into the phase region(Al)+Al4Ca+Al2Si2Ca have demonstrated asignificant hardening effect.The ternary eutectic(Al)+Al4Ca+Al2Si2Ca had a much finer microstructure as compared to the Al?Sieutectic,which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356type.Unlike commercial alloys of the A356type,the model alloy does not require quenching,as hardening particles are formed in thecourse of annealing of castings.
文摘To explore the approaches of combined toughening and strengthening of the Al_3Ti-based L1_2 intermetallic alloys, multiphase Al_3Ti alloys formed by combining with reinforcement or by second phase precipitation are being studied. The interface reactions between Al_(66)Fe_9Ti_(25)matrix and SiC reinforcement were investigated. It is determined that SiC is chemically incompatible with the Al_(66)Fe_9Ti_(25)matrix, Al_2O_3 barrier coating on SiC by sol-gel process was developed to minimize the interfacial reactions. On the other hand, a new type of Al_3Ti-based alloy having a L1_2 matrix with second phase precipitation has been developed. The quaternary alloys based on Al_(66)Fe_9Ti_(25)and modified with Nb additions, consist of a L1_2 matrix and D0_(22) second phase in the annealed state ,but the second phase can be dissolved by solution treatment and precipitated during high temperature aging.