The optimum conditions for preparation of Al 13 sulfate were investigated.Some important parameters such as the ratio of n( OH - ) / n( Al ) ,reaction temperature,base injection rate,mixing intensity and ageing tim e ...The optimum conditions for preparation of Al 13 sulfate were investigated.Some important parameters such as the ratio of n( OH - ) / n( Al ) ,reaction temperature,base injection rate,mixing intensity and ageing tim e were identified.The hydroxyl ligand number and aging time are determinate fac tors for the forming of Al 13 .The nice tetrahedral sulfate was characterized by XRD and SEM,and the mol ecular formula was inferred to be[NaAlO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 .This crystal was used as standard matter for preparation of polynuclear Al species(Al 13 ).The purity,stability and storage condition of the polynuclear Al 13 solution were explored.展开更多
The nature and distribution of Cu species in Cu-SSZ-13 play a vital role in selective catalytic reduction of NO by NH3(NH3-SCR),but existing methods for adjusting the Cu distribution are complex and difficult to contr...The nature and distribution of Cu species in Cu-SSZ-13 play a vital role in selective catalytic reduction of NO by NH3(NH3-SCR),but existing methods for adjusting the Cu distribution are complex and difficult to control.Herein,we report a simple and effective ion-exchange approach to regulate the Cu distribution in the one-pot synthesized Cu-SSZ-13 that possesses sufficient initial Cu species and thus provides a“natural environment”for adjusting Cu distribution precisely.By using this proposed strategy,a series of Cu-SSZ-13x zeolites with different Cu contents and distributions were obtained.It is shown that the dealumination of the as-synthesized Cu-SSZ-13 during the ion-exchange generates abundant vacant sites in the double six-membered-rings of the SSZ-13 zeolite for relocating Cu2+species and thus allows the redistribution of the Cu species.The catalytic results showed that the ion-exchanged Cu-SSZ-13 zeolites exhibit quite different catalytic performance in NH3-SCR reaction but superior to the parent counterpart.The structure–activity relationship analysis indicates that the redistribution of Cu species rather than other factors(e.g.,crystallinity,chemical composition,and porous structure)is responsible for the improved NH3-SCR performance and SO_(2) and H_(2)O resistance.Our work offers an effective method to precisely adjust the Cu distribution in preparing the industrial SCR catalysts.展开更多
An organic-inorganic hybrid sealing agent was fabricated and used in the plasma sprayed Al_(2)O_(3)-13 wt%TiO_(2)coating,and conventional silicone agent was also used for comparison.Protection performance of the coati...An organic-inorganic hybrid sealing agent was fabricated and used in the plasma sprayed Al_(2)O_(3)-13 wt%TiO_(2)coating,and conventional silicone agent was also used for comparison.Protection performance of the coatings was comprehensively evaluated based on both anti-corrosion and anti-biofouling properties.The results reveal that the sealing treatment is remarkably useful to decrease the porosity of the coating,and the porosity of the coating sealed with the hybrid agent is only 0.035%.Immersion corrosion test and Tafel polarization test reveal that the sealed coating with the hybrid agent exhibits a better corrosion resistance by compared with the coating sealed with silicone agent.The corrosion current density i_(corr) of the hybrid agent sealed coating is only 0.7×10^(-6)A·cm^(-2).Moreover,anti-biofouling tests both in the outdoor analogue hydraulic environment and in the natural marine environment prove that the mentioned novel coating presents a better combination of corrosion resistance and anti-biofouling property by compared with the other coatings,and it could be used as a protection of metal components in the marine environment.展开更多
In this work,high-manganese aluminium bronze CuMn_(13)Al_(7)samples were prepared by arc additive manufacturing technology.The phase composition,microstructure,and crystal structure of the high-manganese aluminium bro...In this work,high-manganese aluminium bronze CuMn_(13)Al_(7)samples were prepared by arc additive manufacturing technology.The phase composition,microstructure,and crystal structure of the high-manganese aluminium bronze CuMn_(13)Al_(7)arc additive manufactured samples were analysed using direct-reading spectrometer,metallographic microscope,scanning electron microscope,and transmission electron microscope.The micro-hardness tester,tensile tester,impact tester,and electrochemical workstation were also used to test the performance of the CuMn_(13)Al_(7)samples.By studying the microstructure and properties of the CuMn_(13)Al_(7)samples,it was found that preparation of the samples by the arc additive manufacturing technology ensured good forming quality,almost no defects,and good metallurgical bonding inside the sample.The metallographic structure(α+β+point phase)mainly comprises the following:the metallographic structure in the equiaxed grain region has an obvious grain boundaryα;the metallographic structure in the remelting region has no obvious grain boundaryα;the thermal influence on the metallographic structure produced a weaker grain boundaryαthan the equiaxed grain region.The transverse and longitudinal cross sections of the sample had uniform microhardness distributions,and the average microhardness values were 190.5 HV0.1 and 192.7 HV0.1,respectively.The sample also had excellent mechanical properties:yield strength of 301 MPa,tensile strength of 633 MPa,elongation of 43.5%,reduction of area by 58%,Charpy impact value of 68 J/cm^(2)at–20℃,and dynamic potential polarisation curve test results.Further,it was shown that the average corrosion potential of the sample was–284.5 mV,and the average corrosion current density was 4.1×10–3 mA/cm^(2).展开更多
Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this w...Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.展开更多
文摘The optimum conditions for preparation of Al 13 sulfate were investigated.Some important parameters such as the ratio of n( OH - ) / n( Al ) ,reaction temperature,base injection rate,mixing intensity and ageing tim e were identified.The hydroxyl ligand number and aging time are determinate fac tors for the forming of Al 13 .The nice tetrahedral sulfate was characterized by XRD and SEM,and the mol ecular formula was inferred to be[NaAlO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 .This crystal was used as standard matter for preparation of polynuclear Al species(Al 13 ).The purity,stability and storage condition of the polynuclear Al 13 solution were explored.
基金supports from National Natural Science Foundation of China(Nos.22178059 and 91934301)Natural Science Foundation of Fujian Province,China(2020J01513)+1 种基金Sinochem Quanzhou Energy Technology Co.,Ltd.(ZHQZKJ-19-F-ZS-0076)Qingyuan Innovation Laboratory(No.00121002),and Fujian Hundred Talent Program.
文摘The nature and distribution of Cu species in Cu-SSZ-13 play a vital role in selective catalytic reduction of NO by NH3(NH3-SCR),but existing methods for adjusting the Cu distribution are complex and difficult to control.Herein,we report a simple and effective ion-exchange approach to regulate the Cu distribution in the one-pot synthesized Cu-SSZ-13 that possesses sufficient initial Cu species and thus provides a“natural environment”for adjusting Cu distribution precisely.By using this proposed strategy,a series of Cu-SSZ-13x zeolites with different Cu contents and distributions were obtained.It is shown that the dealumination of the as-synthesized Cu-SSZ-13 during the ion-exchange generates abundant vacant sites in the double six-membered-rings of the SSZ-13 zeolite for relocating Cu2+species and thus allows the redistribution of the Cu species.The catalytic results showed that the ion-exchanged Cu-SSZ-13 zeolites exhibit quite different catalytic performance in NH3-SCR reaction but superior to the parent counterpart.The structure–activity relationship analysis indicates that the redistribution of Cu species rather than other factors(e.g.,crystallinity,chemical composition,and porous structure)is responsible for the improved NH3-SCR performance and SO_(2) and H_(2)O resistance.Our work offers an effective method to precisely adjust the Cu distribution in preparing the industrial SCR catalysts.
基金the National Natural Science Foundation of China(No.51379070)the Graduate Research and Innovation Projects of Jiangsu Province(No.KYCX21_0463)。
文摘An organic-inorganic hybrid sealing agent was fabricated and used in the plasma sprayed Al_(2)O_(3)-13 wt%TiO_(2)coating,and conventional silicone agent was also used for comparison.Protection performance of the coatings was comprehensively evaluated based on both anti-corrosion and anti-biofouling properties.The results reveal that the sealing treatment is remarkably useful to decrease the porosity of the coating,and the porosity of the coating sealed with the hybrid agent is only 0.035%.Immersion corrosion test and Tafel polarization test reveal that the sealed coating with the hybrid agent exhibits a better corrosion resistance by compared with the coating sealed with silicone agent.The corrosion current density i_(corr) of the hybrid agent sealed coating is only 0.7×10^(-6)A·cm^(-2).Moreover,anti-biofouling tests both in the outdoor analogue hydraulic environment and in the natural marine environment prove that the mentioned novel coating presents a better combination of corrosion resistance and anti-biofouling property by compared with the other coatings,and it could be used as a protection of metal components in the marine environment.
基金University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2019-022)Anhui Provincial Natural Science Foundation of China(Grant No.1908085QE174)the Talent Program of Anhui Science and Technology University(Grant No.RCYJ201905).
文摘In this work,high-manganese aluminium bronze CuMn_(13)Al_(7)samples were prepared by arc additive manufacturing technology.The phase composition,microstructure,and crystal structure of the high-manganese aluminium bronze CuMn_(13)Al_(7)arc additive manufactured samples were analysed using direct-reading spectrometer,metallographic microscope,scanning electron microscope,and transmission electron microscope.The micro-hardness tester,tensile tester,impact tester,and electrochemical workstation were also used to test the performance of the CuMn_(13)Al_(7)samples.By studying the microstructure and properties of the CuMn_(13)Al_(7)samples,it was found that preparation of the samples by the arc additive manufacturing technology ensured good forming quality,almost no defects,and good metallurgical bonding inside the sample.The metallographic structure(α+β+point phase)mainly comprises the following:the metallographic structure in the equiaxed grain region has an obvious grain boundaryα;the metallographic structure in the remelting region has no obvious grain boundaryα;the thermal influence on the metallographic structure produced a weaker grain boundaryαthan the equiaxed grain region.The transverse and longitudinal cross sections of the sample had uniform microhardness distributions,and the average microhardness values were 190.5 HV0.1 and 192.7 HV0.1,respectively.The sample also had excellent mechanical properties:yield strength of 301 MPa,tensile strength of 633 MPa,elongation of 43.5%,reduction of area by 58%,Charpy impact value of 68 J/cm^(2)at–20℃,and dynamic potential polarisation curve test results.Further,it was shown that the average corrosion potential of the sample was–284.5 mV,and the average corrosion current density was 4.1×10–3 mA/cm^(2).
基金supported by the Institut de la Francophonie pour le Developpement Durable(IFDD/Canada)/Projet de Deploiement des Technologies et Innovations Environnementales(PDTIE)funded by Organisation Internationale de la Francophonie(OIF)the Organisation of African,Caribbean and Pacific States and the European Union(EU)(FED/220/421-370)the Local Materials Promotion Authority(MIPROMALO)of the Ministry of Scientific Research and Innovation of Cameroon who made it possible for this scientific work to be carried out.
文摘Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.