Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical p...Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical particle solidification velocity for swamp and thus offers better dispersal.In the present investigation,the friction stir processing(FSP)is utilized to produce AZ31/Al_(2)O_(3)nanocomposites at various tool rotation speeds(i.e.,900,1200,and 1500 rpm)with an optimized 1.5%volume alumina(Al_(2)O_(3))reinforcement ratio.The mechanical and corrosion behavior of AZ31/Al_(2)O_(3)-developed nanocomposites was investigated and compared with that of the AZ31 base alloy.The AZ31 alloy experienced a comprehensive dynamic recrystallization during FSP,causing substantial grain refinement.Grain-size strengthening is the primary factor contributed to the enhancement in the strength of the fabricated nanocomposite.Tensile strength and yield strength values were lower than those for the base metal matrix,although an upward trend in both values has been observed with an increase in tool rotation speed.An 19.72%increase in hardness along with superior corrosion resistance was achieved compared to the base alloy at a tool rotational speed of 1500 rpm.The corrosion currents(Jcorr)of all samples dropped with increase in the rotational speed,in contrast to the corrosion potentials(Ecorr),which increased.The values of Jcorr of AZ31/Al_(2)O_(3)were 42.3%,56.8%,and 65.5%lower than those of AZ31 alloy at the chosen rotating speeds of 900,1200,and 1500 rpm,respectively.The corrosion behavior of friction stir processed nanocomposites have been addressed in this manuscript which has not been given sufficient attention in the existing literature.Further,this work offers an effective choice for the quality assurance of the FSP process of AZ31/Al_(2)O_(3)nanocomposites.The obtained results are relevant to the development of lightweight automobile and aerospace structures and components.展开更多
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ...SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples.展开更多
文摘Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical particle solidification velocity for swamp and thus offers better dispersal.In the present investigation,the friction stir processing(FSP)is utilized to produce AZ31/Al_(2)O_(3)nanocomposites at various tool rotation speeds(i.e.,900,1200,and 1500 rpm)with an optimized 1.5%volume alumina(Al_(2)O_(3))reinforcement ratio.The mechanical and corrosion behavior of AZ31/Al_(2)O_(3)-developed nanocomposites was investigated and compared with that of the AZ31 base alloy.The AZ31 alloy experienced a comprehensive dynamic recrystallization during FSP,causing substantial grain refinement.Grain-size strengthening is the primary factor contributed to the enhancement in the strength of the fabricated nanocomposite.Tensile strength and yield strength values were lower than those for the base metal matrix,although an upward trend in both values has been observed with an increase in tool rotation speed.An 19.72%increase in hardness along with superior corrosion resistance was achieved compared to the base alloy at a tool rotational speed of 1500 rpm.The corrosion currents(Jcorr)of all samples dropped with increase in the rotational speed,in contrast to the corrosion potentials(Ecorr),which increased.The values of Jcorr of AZ31/Al_(2)O_(3)were 42.3%,56.8%,and 65.5%lower than those of AZ31 alloy at the chosen rotating speeds of 900,1200,and 1500 rpm,respectively.The corrosion behavior of friction stir processed nanocomposites have been addressed in this manuscript which has not been given sufficient attention in the existing literature.Further,this work offers an effective choice for the quality assurance of the FSP process of AZ31/Al_(2)O_(3)nanocomposites.The obtained results are relevant to the development of lightweight automobile and aerospace structures and components.
基金Funded by the National Key R&D Program of China(No.2018YFB1501002)。
文摘SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples.