Flexible sensors have great potential for monitoring human body motion signals. This paper presents a flexible sensor that uses zinc oxide (ZnO) to improve the mechanical properties and electrical conductivity of PVA ...Flexible sensors have great potential for monitoring human body motion signals. This paper presents a flexible sensor that uses zinc oxide (ZnO) to improve the mechanical properties and electrical conductivity of PVA hydrogel. The composite hydrogel has excellent conductive properties and high strain sensitivity, making it suitable for motion monitoring. The PVA/ZnO conductive hydrogel is tested on various body parts, showing effective feedback on movement changes and good electrical signal output effects for different motion degrees, confirming its feasibility in flexible sensors. The sensor exhibits good mechanical properties, electrical conductivity, and tensile strain sensing performance, making it a promising sensor material. It can accurately monitor wrist bending, finger deformation, bending, and large-scale joint movements due to its wide monitoring range and recoverable strain. The results show that the PVA/ZnO conductive hydrogel can provide effective feedback in flexible sensors, which is suitable for use in motion monitoring.展开更多
A novel soluble conjugated copolymer (propionic acid)-co-(propargyl alcohol) (PA-co-OHP) has been synthesized for the first time using a new palladium acetylide catalyst Pd(PPh3)(2)(C=CC(CH3)(2)OH)(2)(PPB). Thin film ...A novel soluble conjugated copolymer (propionic acid)-co-(propargyl alcohol) (PA-co-OHP) has been synthesized for the first time using a new palladium acetylide catalyst Pd(PPh3)(2)(C=CC(CH3)(2)OH)(2)(PPB). Thin film resistive humidity sensor based oil the copolymer doped with HClO4 was prepared. The impedance of the sensor changed from 10(3)similar to 10(7) Omega in 95%similar to 30%RH, and the response of that is very quick (<6 sec.). Preliminary results show the copolymer is a promising humidity sensitive material.展开更多
Fluorescence sensors based on a trifluoroacetophone compound doped in ethyl cellulose (EC) thin films have been developed for the detection of methanol, ethanol, and 2-propanol (isopropanol, PriOH) vapors. Thin-film s...Fluorescence sensors based on a trifluoroacetophone compound doped in ethyl cellulose (EC) thin films have been developed for the detection of methanol, ethanol, and 2-propanol (isopropanol, PriOH) vapors. Thin-film sensors are prepared with 4-dibutylamino-4’-(trifluoroacetyl)stilbene (Chromoionophore IX or CIX) as the fluorescent dye and its solution in EC was spin-coated onto glass slides. The luminescence intensity of the dye (555 nm) is quenched when exposed to alcohol vapor. Tested in the range of ca. 0 - 1.5?× 104 ppm (wt) for MeOH and EtOH, and ca. 0 - 2.3 × 104 ppm for PriOH, the sensors gave detection limits of 9, 13, 21 ppm and quantification limits of 32, 43, and 70 ppm, respectively. To enhance the sensitivity of the sensors, TiO2 particles have been added to the films to induce Mie scattering, which increases the incident light interaction with the sensing films. The sensors in this work have been designed to work in a multianalyte platform for the simultaneous detection of multiple gas analytes.展开更多
In order to prevent drunk driving timely and protect personal safety,a kind of vehicle-loaded alcohol concentration detector based on single chip microcomputer control is designed.The detector usesAT89C51 microcontrol...In order to prevent drunk driving timely and protect personal safety,a kind of vehicle-loaded alcohol concentration detector based on single chip microcomputer control is designed.The detector usesAT89C51 microcontroller as the core,makes use of the gas sensor,A/D converter to detect the alcohol concentration of the breath of the driver,can set different thresholds according to the space of the car model,automatically cut off the ignition circuit for the exceeded threshold,and has the sound and light alarm function,which fundamentally solve the problem of drunk driving.The instrument is compact in size,stable in performance,convenient in installation and debugging,and of practical significance.展开更多
Since the discovery of graphene,the star among new materials,there has been a surge of attention focused on the monatomic and monomolecular sheets which can be obtained by exfoliation of layered compounds.Such materia...Since the discovery of graphene,the star among new materials,there has been a surge of attention focused on the monatomic and monomolecular sheets which can be obtained by exfoliation of layered compounds.Such materials are known as two-dimensional(2D)materials and offer enormous versatility and potential.The ultimate single atom,or molecule,thickness of the 2D materials sheets provides the highest surface to weight ratio of all the nanomaterials,which opens the door to the design of more sensitive and reliable chemical sensors.The variety of properties and the possibility of tuning the chemical and surface properties of the 2D materials increase their potential as selective sensors,targeting chemical species that were previously difficult to detect.The planar structure and the mechanical flexibility of the sheets allow new sensor designs and put 2D materials at the forefront of all the candidates for wearable applications.When developing sensors for alcohol,the response time is an essential factor for many industrial and forensic applications,particularly when it comes to hand-held devices.Here,we review recent developments in the applications of 2D materials in sensing alcohols along with a study on parameters that affect the sensing capabilities.The review also discusses the strategies used to develop the sensor along with their mechanisms of sensing and provides a critique of the current limitations of 2D materials-based alcohol sensors and an outlook for the future research required to overcome the challenges.展开更多
文摘Flexible sensors have great potential for monitoring human body motion signals. This paper presents a flexible sensor that uses zinc oxide (ZnO) to improve the mechanical properties and electrical conductivity of PVA hydrogel. The composite hydrogel has excellent conductive properties and high strain sensitivity, making it suitable for motion monitoring. The PVA/ZnO conductive hydrogel is tested on various body parts, showing effective feedback on movement changes and good electrical signal output effects for different motion degrees, confirming its feasibility in flexible sensors. The sensor exhibits good mechanical properties, electrical conductivity, and tensile strain sensing performance, making it a promising sensor material. It can accurately monitor wrist bending, finger deformation, bending, and large-scale joint movements due to its wide monitoring range and recoverable strain. The results show that the PVA/ZnO conductive hydrogel can provide effective feedback in flexible sensors, which is suitable for use in motion monitoring.
文摘A novel soluble conjugated copolymer (propionic acid)-co-(propargyl alcohol) (PA-co-OHP) has been synthesized for the first time using a new palladium acetylide catalyst Pd(PPh3)(2)(C=CC(CH3)(2)OH)(2)(PPB). Thin film resistive humidity sensor based oil the copolymer doped with HClO4 was prepared. The impedance of the sensor changed from 10(3)similar to 10(7) Omega in 95%similar to 30%RH, and the response of that is very quick (<6 sec.). Preliminary results show the copolymer is a promising humidity sensitive material.
文摘Fluorescence sensors based on a trifluoroacetophone compound doped in ethyl cellulose (EC) thin films have been developed for the detection of methanol, ethanol, and 2-propanol (isopropanol, PriOH) vapors. Thin-film sensors are prepared with 4-dibutylamino-4’-(trifluoroacetyl)stilbene (Chromoionophore IX or CIX) as the fluorescent dye and its solution in EC was spin-coated onto glass slides. The luminescence intensity of the dye (555 nm) is quenched when exposed to alcohol vapor. Tested in the range of ca. 0 - 1.5?× 104 ppm (wt) for MeOH and EtOH, and ca. 0 - 2.3 × 104 ppm for PriOH, the sensors gave detection limits of 9, 13, 21 ppm and quantification limits of 32, 43, and 70 ppm, respectively. To enhance the sensitivity of the sensors, TiO2 particles have been added to the films to induce Mie scattering, which increases the incident light interaction with the sensing films. The sensors in this work have been designed to work in a multianalyte platform for the simultaneous detection of multiple gas analytes.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant No.172102210124the Key Scientific Research projects in Colleges and Universities in Henan Grant No.18B460003.
文摘In order to prevent drunk driving timely and protect personal safety,a kind of vehicle-loaded alcohol concentration detector based on single chip microcomputer control is designed.The detector usesAT89C51 microcontroller as the core,makes use of the gas sensor,A/D converter to detect the alcohol concentration of the breath of the driver,can set different thresholds according to the space of the car model,automatically cut off the ignition circuit for the exceeded threshold,and has the sound and light alarm function,which fundamentally solve the problem of drunk driving.The instrument is compact in size,stable in performance,convenient in installation and debugging,and of practical significance.
文摘Since the discovery of graphene,the star among new materials,there has been a surge of attention focused on the monatomic and monomolecular sheets which can be obtained by exfoliation of layered compounds.Such materials are known as two-dimensional(2D)materials and offer enormous versatility and potential.The ultimate single atom,or molecule,thickness of the 2D materials sheets provides the highest surface to weight ratio of all the nanomaterials,which opens the door to the design of more sensitive and reliable chemical sensors.The variety of properties and the possibility of tuning the chemical and surface properties of the 2D materials increase their potential as selective sensors,targeting chemical species that were previously difficult to detect.The planar structure and the mechanical flexibility of the sheets allow new sensor designs and put 2D materials at the forefront of all the candidates for wearable applications.When developing sensors for alcohol,the response time is an essential factor for many industrial and forensic applications,particularly when it comes to hand-held devices.Here,we review recent developments in the applications of 2D materials in sensing alcohols along with a study on parameters that affect the sensing capabilities.The review also discusses the strategies used to develop the sensor along with their mechanisms of sensing and provides a critique of the current limitations of 2D materials-based alcohol sensors and an outlook for the future research required to overcome the challenges.