期刊文献+
共找到1,013篇文章
< 1 2 51 >
每页显示 20 50 100
Exploring nitrogen reduction reaction mechanisms in electrocatalytic ammonia synthesis:A comprehensive review
1
作者 Abhishek Umesh Shetty Ravi Sankannavar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期681-697,共17页
The electrochemical nitrogen reduction reaction(eNRR)holds significant promise as a sustainable alternative to the conventional large-scale Haber Bosch process,offering a carbon footprint-free approach for ammonia syn... The electrochemical nitrogen reduction reaction(eNRR)holds significant promise as a sustainable alternative to the conventional large-scale Haber Bosch process,offering a carbon footprint-free approach for ammonia synthesis.While the process is thermodynamically feasible at ambient temperature and pressure,challenges such as the competing hydrogen evolution reaction,low nitrogen solubility in electrolytes,and the activation of inert dinitrogen(N_(2))gas adversely affect the performance of ammonia production.These hurdles result in low Faradaic efficiency and low ammonia production rate,which pose obstacles to the commercialisation of the process.Researchers have been actively designing and proposing various electrocatalysts to address these issues,but challenges still need to be resolved.A key strategy in electrocatalyst design lies in understanding the underlying mechanisms that govern the success or failure of the electrocatalyst in driving the electrochemical reaction.Through mechanistic studies,we gain valuable insights into the factors affecting the reaction,enabling us to propose optimised designs to overcome the barriers.This review aims to provide a comprehensive understanding of the various mechanisms involved in eNRR on the electrocatalyst surface.It delves into the various mechanisms such as dissociative,associative,Mars-van Krevelen,lithium-mediated nitrogen reduction and surface hydrogenation mechanisms of nitrogen reduction.By unravelling the intricacies of eNRR mechanisms and exploring promising avenues,we can pave the way for more efficient and commercially viable ammonia synthesis through this sustainable electrochemical process by designing an efficient electrocatalyst. 展开更多
关键词 Green ammonia synthesis ELECTROLYSIS ELECTROCATALYSIS Nitrogen reductionreaction Electrochemical reaction pathways reactionMECHANISM
下载PDF
Cu-based materials for electrocatalytic CO_(2) to alcohols:Reaction mechanism,catalyst categories,and regulation strategies
2
作者 Yaru Lei Yaxin Niu +8 位作者 Xiaolong Tang Xiangtao Yu Xiubing Huang Xiaoqiu Lin Honghong Yi Shunzheng Zhao Jiaying Jiang Jiyue Zhang Fengyu Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期593-611,I0013,共20页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols. 展开更多
关键词 Electrocatalytic CO_(2)RR Cu-based catalyst alcoholS reaction mechanism Regulation strategies
下载PDF
Curcumin delivery nanoparticles based on Maillard reaction of Haematococcus pluvialis protein/galactose for alleviating acute alcoholic liver damage
3
作者 Xinyi Liu Yukun Song +1 位作者 Shasha Cheng Mingqian Tan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2629-2641,共13页
The aim of this study is to investigate the feasibility of Maillard reaction products of Haematococcus pluvialis protein and galactose(HPP-GAL)for improving the bioactivities of curcumin(CUR)for alleviating alcoholic ... The aim of this study is to investigate the feasibility of Maillard reaction products of Haematococcus pluvialis protein and galactose(HPP-GAL)for improving the bioactivities of curcumin(CUR)for alleviating alcoholic liver damage.CUR was embedded into HPP-GAL nanoparticles by the self-assembly of hydrogen bonding and hydrophobic interaction with the particle size around 200 nm.HPP-GAL enhanced the encapsulation efficiency and loading amount of CUR with the value of(89.21±0.33)%and(0.500±0.004)%,respectively.The stabilities of CUR under strong acid,salt ion stability and ultraviolet irradiation conditions were improved by the encapsulation.HPP-GAL-CUR nanoparticles exhibited excellent concentration-dependent in vitro antioxidant activities including DPPH and ABTS scavenging rates,and better protective effect on CUR against gastric acid environment as well as longer release of CUR in simulated intestinal fluid.In addition,the HPPGAL-CUR delivery system possessed liver targeting property due to the existence of GAL,which could effectively alleviate the alcohol-induced liver damage and the inflammation indexes by inhibiting the oxidative stress.Therefore,HPP-GAL-CUR nanoparticles might be a potential candidate system for the prevention of alcoholic liver damage in the future. 展开更多
关键词 Haematococcus pluvialis protein GALACTOSE Curcumin nanocarrier Maillard reaction alcoholic liver damage Liver targeting
下载PDF
Promoting electroreduction of nitrite to ammonia over electron-deficient Pd modulated by rectifying Schottky contacts
4
作者 Shaobo Zhang Yabo Guo +4 位作者 Lu-Hua Zhang Zhihao Feng Bo Zhang Yaheng Wang Fengshou Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期524-530,共7页
Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate th... Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate the reaction pathways and inhibit competing reactions(e.g.hydrogenolysis) for efficient and selective NH_(3) production in an aqueous solution environment.Here,we utilize the Schottky barrier-induced surface electric field to construct high-density electron-deficient Pd nanoparticles by modulating the N content in the carbon carrier to promote the enrichment and immobilization of NO_(2)^(-)on the electrode surface,which ensures the ultimate selectivity for NH_(3).With these properties,Pd@N_(0.14)C with the highest N content achieved excellent catalytic performance for the reduction of NO_(2)^(-)to NH_(3) with the 100% Faraday efficiency at-0.5 and-0.6 V vs,reversible hydrogen electrode(RHE) for NH_(3) production,which was significantly better than Pd/C and Pd@N_(x)C samples with lower N content.This study opens new avenues for rational construction of efficient electrocatalysts for nitrite removal and NH_(3) electrosynthesis. 展开更多
关键词 ELECTROCATALYTIC Nitrite reduction reaction Electronic structure ammonia
下载PDF
100 W-class green hydrogen production from ammonia at a dual-layer electrode containing a Pt-Ir catalyst for an alkaline electrolytic process
5
作者 Donghyun Yoon Sunki Chung +2 位作者 Minjun Choi Eunhyeok Yang Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期352-360,I0009,共10页
Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and i... Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER). 展开更多
关键词 ammonia oxidation Dual-layer catalyst Green hydrogen Electrolytic process Oxygen evolution reaction
下载PDF
Electrocatalysts with atomic-level site for nitrate reduction to ammonia
6
作者 Shuai Yin Rong Cao +4 位作者 Yifan Han Jiachangli Shang Jing Zhang Wei Jiang Guigao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期642-668,共27页
Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such... Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented. 展开更多
关键词 ammonia synthesis Nitrate reduction Electrocatalysts with atomic-level site reaction mechanism In-situ characterization techniques
下载PDF
Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia
7
作者 XIE Meng LUO Wei QIU Pengpeng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期365-376,共12页
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we... Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR. 展开更多
关键词 ordered PtFe alloy mesoporous carbon nanofiber(mCNF) nitrate reduction reaction(NO3RR) ammonia(NH3)production reaction
下载PDF
Interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution 被引量:4
8
作者 Xiao-ming HUA Yong-fei ZHENG +5 位作者 Qian XU Xiong-gang LU Hong-wei CHENG Xing-li ZOU Qiu-shi SONG Zhi-qiang NING 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第3期556-566,共11页
The interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution were investigated.The chalcopyrite surface was examined by scanning electron microscopy and X-ray photoelectron spectroscopy(XPS)techniq... The interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution were investigated.The chalcopyrite surface was examined by scanning electron microscopy and X-ray photoelectron spectroscopy(XPS)techniques.It was found that interfacial passivation layers of chalcopyrite were formed from an iron oxide layer on top of a copper sulfide layer overlaying the bulk chalcopyrite,whereas CuFe1-xS2 or copper sulfides were formed via the preferential dissolution of Fe.The copper sulfide layer formed a new passivation layer,whereas the iron oxide layer peeled off spontaneously and partially from the chalcopyrite surface.The state of the copper sulfide layer was discussed after being deduced from the appearance of S2-,S22-,Sn2-,S0 and SO42-.A mechanism for the oxidation and passivation of chalcopyrite under different pH values and redox potentials was proposed.Accordingly,a model of the interfacial reaction on the chalcopyrite surface was constructed using a three-step reaction pathway,which demonstrated the formation and transformation of passivation layers under the present experimental conditions. 展开更多
关键词 CHALCOPYRITE interfacial reaction ammonia passivation layer oxidation mechanisms
下载PDF
Efficient oxidation of benzyl alcohol with heteropolytungstate as reaction-controlled phase-transfer catalyst 被引量:5
9
作者 Zhi Huan Weng Jin Yan Wang Xi Gao Jian 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第8期936-938,共3页
A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the pr... A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the properties of reaction-controlled phasetransfer catalysis, and they had excellent catalytic ability to the oxidation of benzyl alcohol. No other by-products were detected by gas chromatography. Once the hydrogen peroxide was consumed completely, the catalyst precipitated from solvent, and the results of the catalyst recycle showed that the catalyst had high stability. 展开更多
关键词 HETEROPOLYTUNGSTATE reaction-controlled phase-transfer Benzyl alcohol BENZALDEHYDE Hydrogen peroxide
下载PDF
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia 被引量:3
10
作者 Daming Feng Lixue Zhou +3 位作者 Timothy J.White Anthony K.Cheetham Tianyi Ma Fengxia Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期205-240,共36页
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere... Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions. 展开更多
关键词 Metal–organic frameworks Electrosynthesis of ammonia Nitrogen reduction reactions Nitrate reduction reactions
下载PDF
Recent development of catalytic strategies for sustainable ammonia production 被引量:2
11
作者 Supeng Yu Ting Xiang +2 位作者 Njud SAlharbi Bothaina AAl-aidaroos Changlun Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期65-113,共49页
Presently,ammonia is an ideal candidate for future clean energy.The Haber-Bosch process has been an essential ammonia production process,and it is one of the most important technological advancements since its inventi... Presently,ammonia is an ideal candidate for future clean energy.The Haber-Bosch process has been an essential ammonia production process,and it is one of the most important technological advancements since its invention,sustaining the explosive growth of military munitions industry and fertilizers in the first half of the 20th century.However,the process is facing great challenges:the growing need for ammonia and the demands of environmental protection.High energy consumption and high CO_(2) emissions greatly limit the application of the Haber-Bosch method,and increasing research efforts are devoted to"green"ammonia synthesis.Thermocatalytic,electrocatalytic,and photocatalytic ammonia production under mild conditions and the derived chemical looping and plasma ammonia production methods,have been widely developed.Electrocatalytic and photocatalytic methods,which use low fossil fuels,are naturally being considered as future directions for the development of ammonia production.Although their catalytic efficiency of ammonia generation is not yet sufficient to satisfy the actual demands,considerable progress has been made in terms of regulating structure and morphology of catalyst and improving preparation efficiency.The chemical looping approach of ammonia production differs from the thermocatalytic,electrocatalytic,and photocatalytic methods,and is the method of reusing raw materials.The plasma treatment approach alters the overall ammonia production approach and builds up a new avenue of development in combination with thermal,photocatalytic,and electrocatalytic methods as well.This review discusses several recent effective catalysts for different ammonia production methods and explores mechanisms as well as efficiency of these catalysts for catalytic N2fixation of ammonia. 展开更多
关键词 Thermocatalytic ammonia production Electrocatalytic and photocatalytic ammonia production Thermodynamics process ELECTROCHEMISTRY Multiphase reaction
下载PDF
Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles 被引量:2
12
作者 ZHOU Zhihua XIA Shumei HE Liangnian 《物理化学学报》 SCIE CAS CSCD 北大核心 2018年第8期838-844,共7页
关键词 温室气体 绿色化学 环境保护 合成方法 邻二醇
下载PDF
Ammonia borane-enabled hydrogen transfer processes:Insights into catalytic strategies and mechanisms 被引量:1
13
作者 Wenfeng Zhao Hu Li +2 位作者 Heng Zhang Song Yang Anders Riisager 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期948-971,共24页
Transfer hydrogenation(TH) with in situ generated hydrogen donor is of great importance in reduction reactions, and an alternative strategy to traditional hydrogenation processes involving pressurized molecular hydrog... Transfer hydrogenation(TH) with in situ generated hydrogen donor is of great importance in reduction reactions, and an alternative strategy to traditional hydrogenation processes involving pressurized molecular hydrogen. Ammonia borane(NH3BH3, AB) is a promising material of hydrogen storage, and it has attracted much attention in reductive organic transformations owing to its high activity, good atom economy, nontoxicity, sustainability, and ease of transport and storage. This review focuses on summarizing the recent progress of AB-mediated TH reactions of diverse substrates including nitro compounds, nitriles, imines, alkenes, alkynes, carbonyl compounds(ketones and aldehydes), carbon dioxide,and N-and O-heterocycles. Syntheses protocols(metal-containing and metal-free), the effect of reaction parameters, product distribution, and variation of reactivity are surveyed, and the mechanism of each reaction involving the action mode of AB as well as structure-activity relationships is discussed in detail. Finally, perspectives are presented to highlight the challenges and opportunities for AB-enabled TH reactions of unsaturated compounds. 展开更多
关键词 Transfer hydrogenation ammonia borane Hydrogen donor reaction mechanism Catalytic strategies
下载PDF
Visualization of atomic scale reaction dynamics of supported nanocatalysts during oxidation and ammonia synthesis using in-situ environmental(scanning) transmission electron microscopy
14
作者 Michael R.Ward Robert W.Mitchell +1 位作者 Edward D.Boyes Pratibha L.Gai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期281-290,I0007,共11页
Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as... Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts. 展开更多
关键词 In-situ visualization Atomic scale reaction dynamics In-situ environmental scanning transmission electron microscopy with single atom resolution Supported nanoparticles ammonia synthesis Oxidation reactions
下载PDF
STUDIES ON 1,2,3-DIAZAPHOSPHOLE Ⅳ REACTION OF 1,2,3-DIAZAPHOSPHOLE WITH ALCOHOLS
15
作者 Bao Zhong CAI Lun Tzu LIU Ru Yu CHEN Institute of Elemento-Organic Chemistry,Nankai University,Tianjin 300071 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第7期531-534,共4页
Rapid addition of alcohols to 1,2,3-diazaphosphole 1 easily gave tricoordinated phosphorus compounds,which were sulfurized to tetracoordinated phosphorus compounds. When ethylene glycol and aminoethanol were used sepa... Rapid addition of alcohols to 1,2,3-diazaphosphole 1 easily gave tricoordinated phosphorus compounds,which were sulfurized to tetracoordinated phosphorus compounds. When ethylene glycol and aminoethanol were used separately to react with 1,the tricoordinated phosphorus compounds which formed,rearranged to pentacoordinated phosphorus compounds and the substituents at N_2 affected the rearrangement significantly. 展开更多
关键词 ppm data reaction OF 1 2 3-DIAZAPHOSPHOLE WITH alcoholS STUDIES ON 1 2 3-DIAZAPHOSPHOLE
下载PDF
THEORETICAL STUDIES ON THE REACTION MECHANISM OF AMMONIA WITH FORMALDEHY DE
16
作者 Yun Zhu HAN Qiu Chang ZHAO Department of Chemistry,Liaocheng Teachers College,Liaocheng Shandong 252059 Cheng Da ZHAO Department of Chemistry,Northeast Normal University,Changchun,130024 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第2期101-104,共4页
The reaction mechanism of ammonia with formaldehyde was investigated by using the intrinsic reaction coordinate(IRC)method on the ab initio RHF/STO-3G basis set. our results indicate that the reaction proceeds in two ... The reaction mechanism of ammonia with formaldehyde was investigated by using the intrinsic reaction coordinate(IRC)method on the ab initio RHF/STO-3G basis set. our results indicate that the reaction proceeds in two stages:the first step yields the molecular complex and the second one is the rearrangement from molecular complex to the reaction proauct. 展开更多
关键词 IRC THEORETICAL STUDIES ON THE reaction MECHANISM OF ammonia WITH FORMALDEHY DE
下载PDF
Heteropolymolybdate as a New Reaction-controlled Phase-transfer Catalyst for Efficient Alcohol Oxidation with Hydrogen Peroxide
17
作者 Zhi Huan WENG Jin Yan WANG Xi Gao JIAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第6期848-850,共3页
A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the... A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability. 展开更多
关键词 Heteropolymolybdate reaction-controlled phase-transfer alcohol oxidation.
下载PDF
Bimetallic NiCo boride nanoparticles confined in a MXene network enable efficient ambient ammonia electrosynthesis
18
作者 Chuang Wang Qin-Chao Wang +9 位作者 Ke-Xin Wang Michiel De Ras Kaibin Chu Liang-Liang Gu Feili Lai Sheng-You Qiu Hele Guo Peng-Jian Zuo Johan Hofkens Xiao-Dong Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期469-478,I0012,共11页
Ambient electrocatalytic nitrogen fixation is an emerging technology for green ammonia synthesis,but the absence of optimized,stable and performant catalysts can render its practical application challenging.Herein,bim... Ambient electrocatalytic nitrogen fixation is an emerging technology for green ammonia synthesis,but the absence of optimized,stable and performant catalysts can render its practical application challenging.Herein,bimetallic NiCo boride nanoparticles confined in MXene are shown to accomplish highperformance nitrogen reduction electrolysis.Ta king advantage of the synergistic effect in specific compositions with unique electronic d and p orbits and typical architecture of rich nanosized particles embedded in the interconnected conductive network,the synthesized MXene@NiCoB composite demonstrates extensive improvements in nitrogen molecule chemisorption,active area exposure and charge transport.As a result,optimal NH3 yield rate of 38.7μg h^(-1) mgcat^(-1).and Faradaic efficiency of 6.92%are acquired in0.1 M Na_(2)SO_(4) electrolyte.Moreover,the great catalytic performance can be almost entirely maintained in the cases of repeatedly-cycled and long-term electrolysis.Theoretical investigations reveal that the nitrogen reduction reaction on MXene@NiCoB catalyst proceeds according to the distal pathway,with a distinctly-reduced energy barrier relative to the Co2B counterpart.This work may inspire a new route towards the rational catalyst design for the nitrogen reduction reaction. 展开更多
关键词 Nitrogen reduction reaction ELECTROCATALYST MXene BORIDE ammonia
下载PDF
Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity
19
作者 Zhaoyang Wang Xiaobin Liao +10 位作者 Min Zhou Fuzhi Huang Kwadwo Asare Owusu Jiantao Li Zifeng Lin Qi Sun Xufeng Hong Congli Sun Yibing Cheng Yan Zhao Liqiang Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期288-298,共11页
Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel... Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel cells,metal-air batteries,and water electrolysis system involving hydrogen and value-added organic products generation,but they remain a great challenge.Herein,a bifunctional electrocatalyst is prepared by anchoring CuS/NiS_(2)nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene(Cu_(1)Ni_(2)-S/G)for ORR and AOR.Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies,Cu_(1)Ni_(2)-S/G achieves dramatically enhanced ORR activity with long term stability.Meanwhile,when ethanol is utilized as an oxidant for AOR,an ultralow potential(1.37 V)at a current density of 10 mA cm-2 is achieved,simultaneously delivering a high Faradaic efficiency of 96%for ethyl acetate production.Cu_(1)Ni_(2)-S/G also exhibits catalytic activity for other alcohols electrooxidation process,indicating its multifunctionality.This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering,but also opens up new avenues for the construction of a self-driven biomass electrocatalysis system for the generation of value-added organic products and hydrogen under ambient conditions. 展开更多
关键词 alcohols oxidation reaction HETEROINTERFACE metal sulfide oxygen reduction reaction sulfur vacancies
下载PDF
High-throughput mechanistic study of highly selective hydrogen-bonded organic frameworks for electrochemical nitrate reduction to ammonia
20
作者 Shuo Wang Yi Wang +2 位作者 Yunfan Fu Tianfu Liu Guoxiong Wang 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期408-415,I0011,共9页
Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocataly... Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocatalysts are rationally developed for nitrates reduction to ammonia,allowing not only to regulate wastewater pollution but also to accomplish carbon-neutral ammonia(NH_(3))synthesis.We preform high-throughput computational screening of thirty-six HOFs with various metals as active sites,denoted as HOF-M1,for nitrate reduction reaction(NO_(3)RR)toward NH_(3).We have implemented a hierarchical four-step screening strategy,and ultimately,HOF-Ti1 was selected based on its exceptional catalytic activity and selectivity in the NO_(3)RR process.Through additional analysis,we discovered that the d band center of the active metal sites serves as an effective parameter for designing and predicting the performance of HOFs in NO_(3)RR.This research not only showcases the immense potential of electrocatalysis in transforming NO_(3)RR into NH_(3)but also provides researchers with a compelling incentive to undertake further experimental investigations. 展开更多
关键词 Nitrate reduction reaction ammonia synthesis Hydrogen-bonded organic frameworks High-throughput calculations ELECTROCATALYSTS
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部