In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane perfo...In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane performance and the design of the industrial process.This study focused on the investigation of the effect of water vapor on the separation performance of the separation of VOC/water/nitrogen mixtures by a polydimethylsiloxane(PDMS)membrane.Three types of VOCs:water-miscible ethanol,water-semi-miscible butanol,and water-immiscible cyclohexane,were selected for the study.Different operating parameters including,concentration of the feed VOC,feed temperature,and concentration of the feed water were compared for the separation of binary and ternary VOC/nitrogen mixtures.The interaction between the VOC and water was analyzed to explain the transportation mechanism after analyzing the difference in the membrane performance for the separation of binary and ternary mixtures.The results indicated that the interaction between the VOC(or nitrogen)and water is the key factor affecting membrane performance.Water can promote the permeation of hydrophilic VOC but prevent hydrophobic VOC through the membrane for the separation of ternary VOC/water/nitrogen mixtures.These results will provide fundamental insights for the design of the recovery application process for industrial membrane-based VOCs,and also guidance for the investigation of the separation mechanism in vapor permeation.展开更多
This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of...This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. .展开更多
Degradation of the Indigo Carmine(IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color re...Degradation of the Indigo Carmine(IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase O 3 and aqueous phase H 2O 2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C\-p are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.展开更多
For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional...For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.展开更多
The study of flow behaviour of water-sand mixtures in fractured rocks is of great necessity to understand the producing mechanism and prevention of water inrush and sand gushing accidents.A self-developed seepage test...The study of flow behaviour of water-sand mixtures in fractured rocks is of great necessity to understand the producing mechanism and prevention of water inrush and sand gushing accidents.A self-developed seepage test system is used in this paper to conduct laboratory experiments in order to study the influence of the particle size distribution,the void ratio,and the initial mass of Aeolian sand on the flow behavior.It is concluded that the water flow velocity is insensitive to the initial mass of the Aeolian sand but increases with the power exponent in the Talbot formula and the specimen height.The outflow of the Aeolian sand increases with the power exponent in the Talbot formula,the specimen height,and the initial mass of the Aeolian sand.Besides,the outflow of the Aeolian sand changes exponentially with the water flow velocity.Finally,it is found that the fractured specimen has a maximum sand filtration capacity beyond which the outflow of the Aeolian sand significantly increases with the initial mass of the Aeolian sand.展开更多
For evaluating the water stability of hot-mixed renewable asphalt mixture(HRM),the traditional methods are all tested under still water conditions.Except for damage in still water conditions,the hydrodynamic pore pres...For evaluating the water stability of hot-mixed renewable asphalt mixture(HRM),the traditional methods are all tested under still water conditions.Except for damage in still water conditions,the hydrodynamic pore pressure generated by the tire driving on the surface water has a great impact.Thus,the RAP contents of the HRMs were designed at 0%,30%,45%and 60%with AC-25 gradation.Then,the self-designed evaluation methods of water stability and dynamic modulus were studied.Finally,the mechanism of the influence of hydrodynamic pore pressure damage on HRMs was studied.The results show that the water stability of HRM containing 30%RAP is equivalent to that of 45%RAP,and the water stability of HRM containing 60%RAP decreases significantly.The Contabro test after MIST treatment can be used as an evaluation method for hydrodynamic pore pressure damage on HRM.Low-speed,heavy-load traffic and larger RAP content have greater damage to the mixture after hydrodynamic pore pressure damage.The performance differences between the aged bitumen and pure bitumen,as well as the aged minerals and new minerals,are continuing to be enlarged in hydrodynamic pore pressure conditions,finally affecting the water stability and dynamic modulus of the HRMs.展开更多
The ocean thermal energy conversion (OTEC) system is a promising solution to provide stable electricity supply. Although the available temperature difference in OTEC systems is small, an ammonia/water mixture as worki...The ocean thermal energy conversion (OTEC) system is a promising solution to provide stable electricity supply. Although the available temperature difference in OTEC systems is small, an ammonia/water mixture as working fluid is expected to decrease irreversible losses in the heat exchangers and to improve system performance. However, in actual heat exchangers, an adequate temperature crossing does not occur in the condenser but in the evaporator. Therefore, clarification of this characteristic is important. To date, the logarithmic temperature difference (LMTD) method is used in performance evaluations of OTEC heat exchangers. This method is of limited use if physical properties of fluids vary. A generalized mean temperature difference (GMTD) method is introduced to perform this evaluation. As changes in fluid property values can be considered in the GMTD method, method dependencies on heat exchanger characteristics, effectiveness, and system characteristics can be studied. In particular, GMTD and LMTD using a pure substance were found to be almost equal. Mean temperature differences using mixtures as working fluid were higher in the evaporator, but lower in the condenser, from the GMTD method than from the LMTD method. For higher ammonia concentrations in ammonia/water mixtures, the mean temperature differences from both methods are different.展开更多
As a potential engineered barrier material for disposal of radioactive waste in clay formations,claystone aggregate excavated from the Opalinus clay(OPA),its mixture with bentonite MX80 in a mass ratio of 7/3,and pure...As a potential engineered barrier material for disposal of radioactive waste in clay formations,claystone aggregate excavated from the Opalinus clay(OPA),its mixture with bentonite MX80 in a mass ratio of 7/3,and pure bentonite were extensively investigated with respect to the hydro-mechanical properties and performances.With these materials,a series of parallel experiments was performed under sequentially applied conditions of hydration with synthetic porewater of the clay formation,consolidation and water flow under increased stresses,and gas injection into the water-saturated and compacted materials under loading.Significant responses of the clay mixtures were observed.Main findings include:(1)the hydration and induced swelling of the mixtures are mainly dominated by bentonite content and dry density;(2)the consolidation decreases the porosity and water permeability exponentially by 2-3 orders of magnitude to low values of 10^(-18)-10^(-20) m^(2) at stresses of 2-5 MPa,depending upon bentonite content;and(3)the gas penetration in the water-saturated and compacted bentonite is characterised by a cyclic pressure rising/dropping process limited in between the upper breakthrough and lower shut-off boundaries,whereas the compacted claystone and claystone/bentonite mixture allow for gas release at low and moderate pressures.The results are helpful for design of the engineered barriers for safe isolation of radioactive waste in repositories.展开更多
Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlappin...Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlapping plate-like, hexagonal star-like, dumbbell-like, etc. can be synthesized in the ethanol-water mixtures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrograph (FT-IR). The interrelated effect mechanism is presented in the end. Results show that the modifier carboxyl groups play a significant role in controlling the SrCO3 crystal morphologies, which can alter the crystal growth unit (Sr^2+) supply mode and induce the crystal formation with the morphologies matching their spatial configurations.展开更多
The copolymer of acrylic acid and acrylonitrile has been synthesized and pervaporation properties of the copolymeric membranes have been investigated. In order to elucidate the influence of membrane-permeate interacti...The copolymer of acrylic acid and acrylonitrile has been synthesized and pervaporation properties of the copolymeric membranes have been investigated. In order to elucidate the influence of membrane-permeate interaction on the pervaporation of water-ethanol mixtures and to prepare much improved membranes, the membranes have been treated with alkali metal, alkali earth metal and transition metal salt aqueous solutions. The treated membranes (ionized membranes) exhibited higher separation factors than the untreated membranes. The separation factors of various alkali metal cation membranes decreased in the following order : Li^+>Na^+>K^+, and the permeation rates showed an opposite tendency. The dependence of pervaporation behavior on the copolymer composition ,feed concentration and operating temperature have been studied with both ionized and non-ionized membranes. The apparent activation energies of water and ethanol permeation were calculated.展开更多
A solid ternary mixture consisting of NaF, silicon and one of the metal oxides such as Al2O3, MgO, CaO, SrO, BaO was prepared and used as a defluorinated reagent for CF4 decomposition. The results show that the initia...A solid ternary mixture consisting of NaF, silicon and one of the metal oxides such as Al2O3, MgO, CaO, SrO, BaO was prepared and used as a defluorinated reagent for CF4 decomposition. The results show that the initial conversion of CF4 reached 100% over NaF-Si-MgO and NaF-Si-CaO at 850°C, and the reagent with NaF/Si/MgO molar ratio of 33/34/33 exhibited a high reactivity with a full conversion of CF4 lasting for 57 min. The plausible paths of CF4 decomposition over NaF-Si-Al2O3, NaF-Si-MgO, NaF-Si-CaO, NaF-Si-SrO and NaF-Si-BaO are proposed.展开更多
Within the biofilm and scales Legionella is less far susceptible to the effects of the most frequently used biocides. The objective of this study was to evaluate the effect of a 4-months continuous injection of a gas ...Within the biofilm and scales Legionella is less far susceptible to the effects of the most frequently used biocides. The objective of this study was to evaluate the effect of a 4-months continuous injection of a gas mixture (CO2 and inert gas) in the hot water distribution system of a large hotel colonized by L. pneumophila sg3 on limiting biofilm formation and scales and in turn Legionella growth. Before the continuous injection of the gas mixture, out of the 15 sampling points examined every month 60% were colonized by Legionella (mean concentrations of 102 cfu/L in the boilers and the return loop, and 104 cfu/L in taps and showers). One week after the injection of the gas mixture and daily fluxing of the distal outlets, the level of colonization decreased (3 cfu/L). When it was decided to flux all the distal outlets only 1 day per week the mean concentration of Legionella increased again (>104 cfu/L) in all the sampling points. Thus, cleaning of the boilers was performed and distal outlets were again fluxed daily. One week after the level of contamination decreased again (2 cfu/L). Nonetheless, the colonization was not eliminated and when fluxing of the distal outlets was not performed every day the mean concentrations of Legionella raised up to >104 cfu/L. Results indicate that the gas mixture was able to reduce the level of colonization by Legionella only because associated to the fluxing of the distal outlets.展开更多
Density, viscosity and sound velocity of six binary liquid mixtures of methanol, ethanol, propanol, butanol, hexanol and octanol with 1,4-dioxane have been measured over the entire range of composition at temperature ...Density, viscosity and sound velocity of six binary liquid mixtures of methanol, ethanol, propanol, butanol, hexanol and octanol with 1,4-dioxane have been measured over the entire range of composition at temperature 303.15K. From the experimental densities, viscosities and sound velocity, the excess molar volume (<i>V<sup>E</sup></i>), deviation in viscosity (Δ<i>η</i>) and deviation in isentropic compressibility (Δ<i>K<sub>S</sub></i>) have been calculated. The results have been used to discuss the nature and strength of intermolecular interactions in these mixtures.展开更多
Organic biomass is an attractive feedstock for second generation alcohol production. Wild-type strains of the genus Candida showed capabilities different to produce alcohol fermenting a carbohydrates mixture (synthet...Organic biomass is an attractive feedstock for second generation alcohol production. Wild-type strains of the genus Candida showed capabilities different to produce alcohol fermenting a carbohydrates mixture (synthetic medium), individually and in co-culture. Therefore, the main objective of this work was to evaluate the capability of Candida wild-type strains isolated from termite gut and rumen liquid, to ferment the most commonly carbohydrates presented in citrus residues, individually and in co-culture to alcohol production. C Tropicalis (LR4) presented higher percentage of carbohydrate consumption (74.20% ± 4.60%), alcohol production (44.53 ± 0.01 gLl) and maximal alcohol productivity (6.40 ± 0.01 gL-l day) than C Glabrata (T1). Co-culture schemas, CC1 (LR4: 60%; TI: 40%) and CC3 (first LR4 alone and 2 days later T1) presented the highest alcohol production (45.20 ± 1.30 gL-1 and 46.80 ± 2.60 gL-1, respectively). Maximal alcohol productivity was obtained with CC2 (LR4: 80%; TI: 20%) and CC3 schemas, 7.70 ± 0.29 gL-1 day and 7.80 ± 0.44 gL-l day, respectively. The results suggest the usefulness of these wild-type strains in co-culture as an alternative to alcohol production from carbohydrates mixtures at concentrations commonly found in citrus waste.展开更多
Pervaporation separation of water-acetic acid mixtures through Poly(AN-co-AA) membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatm...Pervaporation separation of water-acetic acid mixtures through Poly(AN-co-AA) membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatment with rare earth metal ions could greatly improve the characteristics of the separation of water-acetic acid mixtures.展开更多
The ionic liquid (IL)-water mixture pretreated bamboo (Phyllostachys edulis) samples were applied in the research of thermal decomposition. [BMIM]Cl (1-Butyl-3-methylimidazolium chloride)- water and [BMIM]BF4 (1-Butyl...The ionic liquid (IL)-water mixture pretreated bamboo (Phyllostachys edulis) samples were applied in the research of thermal decomposition. [BMIM]Cl (1-Butyl-3-methylimidazolium chloride)- water and [BMIM]BF4 (1-Butyl-3-methylimidazolium tetrafluoroborate)-water were used in pretreatment process. Compositions of the untreated bamboo and pretreated bamboo were compared. The results of X-ray diffraction analysis (XRD) were analyzed to explain the effect of ILs mixture on cellulose crystalline structure. The pretreated cellulose with [BMIM]Cl- water mixture was tend to produce the more gaseous products, which were associated with the decomposition rate. The behavior of more CO and CH4 gaseous products and less tar in the thermal decomposition products could be attributed to ILs-water mixture pretreatment process. The potential and some problems of ILs-water mixture pretreatment method applied in thermal chemical conversion methods were also discussed.展开更多
The development of empirical model for the hydraulic transport of sand-water mixtures is important for the design of economical solid-liquid transportation system in chemical and waste-disposal industries. The hydraul...The development of empirical model for the hydraulic transport of sand-water mixtures is important for the design of economical solid-liquid transportation system in chemical and waste-disposal industries. The hydraulic transport characteristics of sand-water mixtures in circular pipelines are numerically investigated by using the FLUENT commercial software. Eulerian granular multiphase (EGM) model with the k-e turbulent model is used for the computation. Present method is validated by the computed values with the measured data. The effect of the concentration and pipe sizes on the relative solid effect is numerically investigated. It is found that the effect of the volumetric delivered concentration on both hydraulic gradient and solid effect increases as the Reynolds number decreases. When the Reynolds number is small, the increase in the volumetric delivered concentration has an effect of decreasing the hydraulic gradient whereas the solid effect increases with the volumetric delivered concentration stepping up. The effect of the pipe diameter is not the critical parameter for deciding the values of the relative solid effect in the sand-water mixture transportation.展开更多
The microscopic properties of NaCl-induced phase separation of acetonitrile (ACN)-water mixtures have been studied by proton nuclear magnetic resonance (1H NMR). Acetonitrile-rich phase increases with increasing NaCl ...The microscopic properties of NaCl-induced phase separation of acetonitrile (ACN)-water mixtures have been studied by proton nuclear magnetic resonance (1H NMR). Acetonitrile-rich phase increases with increasing NaCl concentration (cNaCl) at xACN ≈ 0.25. 1H chemical shift of water for acetonitrile-rich phase rapidly decreases with decreasing NaCl mole concentration and that for water-rich phase quickly increases with increasing cNaCl. However, 1H chemical shift of acetonitrile has nothing to do with the molar concentration of NaCl, and it keeps relatively stable for all solutions (±0.002). These results reveal that Na+ and Cl- are rapidly hydrated by water, not by acetonitrile. The change of 1H chemical shift of water has shown that the number of hydrogen bond increases or hydrogen bond strengths with increasing NaCl molarity in mixtures. But hydrogen bond is broken or weaken with the temperature rising. 1H chemical shifts of pure water and the water in acetonitrile-rich phase have been investigated at 293 K, 298 K and 303 K. The hydration number of Na+ (6.05) in water-rich phase is determined by an empirical equation involving 1H chemical shift, temperature and NaCl molarity, which is in good agreement with the literatures.展开更多
This use of biomass-based adsorbent has been explored for the column study of the adsorptive dehydration of water in ethanol-water mixtures. The column study was carried out using enzyme modified corn starch and the b...This use of biomass-based adsorbent has been explored for the column study of the adsorptive dehydration of water in ethanol-water mixtures. The column study was carried out using enzyme modified corn starch and the breakthrough curve parameters were used to design the packed bed column. The effect of flow rate on the breakthrough curves revealed that adsorption efficiency decreased with increased inflow rate. The empty bed contact time (τ) of the pilot plant packed column was 35.35 min while the breakthrough time is 40.78 min. 66.7% was the fraction of capacity left unused for the pilot plant from the design.展开更多
Novel sorbent hydrogels containing acrylamide/sodium vinylsulfonate, carboxymethyl cellulose and zeolite were synthesized with free radical solution polymerization by using ammonium persulfate/<i><span style=...Novel sorbent hydrogels containing acrylamide/sodium vinylsulfonate, carboxymethyl cellulose and zeolite were synthesized with free radical solution polymerization by using ammonium persulfate/<i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N’</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N’</span></i><span style="font-family:Verdana;">-tetramethylethyle</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">nediamine as redox initiating pair in presence of poly(ethylene glycol) diacrylate as crosslinker. It was to investigate the water uptake properties of series of the novel hydrogels, the semi IPNs and the hybrid/biohybrid composite hydrogel sorbents synthesized in this study. Water uptake studies were performed in water and in water-solvent (acetone, methanol and tetrahydrofuran) binary mixtures at 25</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">C, gravimetrically. Some swelling and diffusion parameters were calculated and discussed. It has been seen that the lower equilibrium swelling factor values in all solvent compositions in comparison with the equilibrium swelling factor values in water.</span></span></span></span>展开更多
基金the National Key Research and Development Program of China(2021YFC2101201,2022YFB3805203)the National Natural Science Foundation of China(22278208)。
文摘In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane performance and the design of the industrial process.This study focused on the investigation of the effect of water vapor on the separation performance of the separation of VOC/water/nitrogen mixtures by a polydimethylsiloxane(PDMS)membrane.Three types of VOCs:water-miscible ethanol,water-semi-miscible butanol,and water-immiscible cyclohexane,were selected for the study.Different operating parameters including,concentration of the feed VOC,feed temperature,and concentration of the feed water were compared for the separation of binary and ternary VOC/nitrogen mixtures.The interaction between the VOC and water was analyzed to explain the transportation mechanism after analyzing the difference in the membrane performance for the separation of binary and ternary mixtures.The results indicated that the interaction between the VOC(or nitrogen)and water is the key factor affecting membrane performance.Water can promote the permeation of hydrophilic VOC but prevent hydrophobic VOC through the membrane for the separation of ternary VOC/water/nitrogen mixtures.These results will provide fundamental insights for the design of the recovery application process for industrial membrane-based VOCs,and also guidance for the investigation of the separation mechanism in vapor permeation.
文摘This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. .
文摘Degradation of the Indigo Carmine(IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase O 3 and aqueous phase H 2O 2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C\-p are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2005CB422300,2007CB411804,2010CB428904)the National Natural Science Foundation of China (Nos. 40976001,40940025,41006002)+2 种基金Tianjin Municipal Science and Technology Commission Project (No. 09JCYBJC07400)the "111 Project" (No.B07036)the Program for New Century Excellent Talents in University (No. NECT-07-0781)
文摘For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.
基金financially supported by the National Natural Science Foundation of China(Nos.41807209,51778215,51708185,and 51974293)the Young Teacher Foundation of HPU(No.2019XQG-19)+3 种基金the Henan Provincial Youth Talent Promotion Program(No.2020HYTP003)the Jiangsu Province Science Foundation for Youths(No.BK20180658)the Doctor Foundation of Henan Polytechnic University(Nos.B2017-51 and B2017-53)China Postdoctoral Science Foundation(No.2018M632422)。
文摘The study of flow behaviour of water-sand mixtures in fractured rocks is of great necessity to understand the producing mechanism and prevention of water inrush and sand gushing accidents.A self-developed seepage test system is used in this paper to conduct laboratory experiments in order to study the influence of the particle size distribution,the void ratio,and the initial mass of Aeolian sand on the flow behavior.It is concluded that the water flow velocity is insensitive to the initial mass of the Aeolian sand but increases with the power exponent in the Talbot formula and the specimen height.The outflow of the Aeolian sand increases with the power exponent in the Talbot formula,the specimen height,and the initial mass of the Aeolian sand.Besides,the outflow of the Aeolian sand changes exponentially with the water flow velocity.Finally,it is found that the fractured specimen has a maximum sand filtration capacity beyond which the outflow of the Aeolian sand significantly increases with the initial mass of the Aeolian sand.
基金This work was financially by the Self-Financing Technology Plan Project of Foshan(2020001005386).
文摘For evaluating the water stability of hot-mixed renewable asphalt mixture(HRM),the traditional methods are all tested under still water conditions.Except for damage in still water conditions,the hydrodynamic pore pressure generated by the tire driving on the surface water has a great impact.Thus,the RAP contents of the HRMs were designed at 0%,30%,45%and 60%with AC-25 gradation.Then,the self-designed evaluation methods of water stability and dynamic modulus were studied.Finally,the mechanism of the influence of hydrodynamic pore pressure damage on HRMs was studied.The results show that the water stability of HRM containing 30%RAP is equivalent to that of 45%RAP,and the water stability of HRM containing 60%RAP decreases significantly.The Contabro test after MIST treatment can be used as an evaluation method for hydrodynamic pore pressure damage on HRM.Low-speed,heavy-load traffic and larger RAP content have greater damage to the mixture after hydrodynamic pore pressure damage.The performance differences between the aged bitumen and pure bitumen,as well as the aged minerals and new minerals,are continuing to be enlarged in hydrodynamic pore pressure conditions,finally affecting the water stability and dynamic modulus of the HRMs.
文摘The ocean thermal energy conversion (OTEC) system is a promising solution to provide stable electricity supply. Although the available temperature difference in OTEC systems is small, an ammonia/water mixture as working fluid is expected to decrease irreversible losses in the heat exchangers and to improve system performance. However, in actual heat exchangers, an adequate temperature crossing does not occur in the condenser but in the evaporator. Therefore, clarification of this characteristic is important. To date, the logarithmic temperature difference (LMTD) method is used in performance evaluations of OTEC heat exchangers. This method is of limited use if physical properties of fluids vary. A generalized mean temperature difference (GMTD) method is introduced to perform this evaluation. As changes in fluid property values can be considered in the GMTD method, method dependencies on heat exchanger characteristics, effectiveness, and system characteristics can be studied. In particular, GMTD and LMTD using a pure substance were found to be almost equal. Mean temperature differences using mixtures as working fluid were higher in the evaporator, but lower in the condenser, from the GMTD method than from the LMTD method. For higher ammonia concentrations in ammonia/water mixtures, the mean temperature differences from both methods are different.
基金funded by the German Federal Ministry for Economic Affairs and Energy(BMWi)under contract number 02E11627。
文摘As a potential engineered barrier material for disposal of radioactive waste in clay formations,claystone aggregate excavated from the Opalinus clay(OPA),its mixture with bentonite MX80 in a mass ratio of 7/3,and pure bentonite were extensively investigated with respect to the hydro-mechanical properties and performances.With these materials,a series of parallel experiments was performed under sequentially applied conditions of hydration with synthetic porewater of the clay formation,consolidation and water flow under increased stresses,and gas injection into the water-saturated and compacted materials under loading.Significant responses of the clay mixtures were observed.Main findings include:(1)the hydration and induced swelling of the mixtures are mainly dominated by bentonite content and dry density;(2)the consolidation decreases the porosity and water permeability exponentially by 2-3 orders of magnitude to low values of 10^(-18)-10^(-20) m^(2) at stresses of 2-5 MPa,depending upon bentonite content;and(3)the gas penetration in the water-saturated and compacted bentonite is characterised by a cyclic pressure rising/dropping process limited in between the upper breakthrough and lower shut-off boundaries,whereas the compacted claystone and claystone/bentonite mixture allow for gas release at low and moderate pressures.The results are helpful for design of the engineered barriers for safe isolation of radioactive waste in repositories.
基金the Key Scientific and Technological Project of Sichuan Province(No.03GG021-002)
文摘Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlapping plate-like, hexagonal star-like, dumbbell-like, etc. can be synthesized in the ethanol-water mixtures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrograph (FT-IR). The interrelated effect mechanism is presented in the end. Results show that the modifier carboxyl groups play a significant role in controlling the SrCO3 crystal morphologies, which can alter the crystal growth unit (Sr^2+) supply mode and induce the crystal formation with the morphologies matching their spatial configurations.
文摘The copolymer of acrylic acid and acrylonitrile has been synthesized and pervaporation properties of the copolymeric membranes have been investigated. In order to elucidate the influence of membrane-permeate interaction on the pervaporation of water-ethanol mixtures and to prepare much improved membranes, the membranes have been treated with alkali metal, alkali earth metal and transition metal salt aqueous solutions. The treated membranes (ionized membranes) exhibited higher separation factors than the untreated membranes. The separation factors of various alkali metal cation membranes decreased in the following order : Li^+>Na^+>K^+, and the permeation rates showed an opposite tendency. The dependence of pervaporation behavior on the copolymer composition ,feed concentration and operating temperature have been studied with both ionized and non-ionized membranes. The apparent activation energies of water and ethanol permeation were calculated.
基金financially supported by the National Natural Science Foundation of China(No.20976149)
文摘A solid ternary mixture consisting of NaF, silicon and one of the metal oxides such as Al2O3, MgO, CaO, SrO, BaO was prepared and used as a defluorinated reagent for CF4 decomposition. The results show that the initial conversion of CF4 reached 100% over NaF-Si-MgO and NaF-Si-CaO at 850°C, and the reagent with NaF/Si/MgO molar ratio of 33/34/33 exhibited a high reactivity with a full conversion of CF4 lasting for 57 min. The plausible paths of CF4 decomposition over NaF-Si-Al2O3, NaF-Si-MgO, NaF-Si-CaO, NaF-Si-SrO and NaF-Si-BaO are proposed.
文摘Within the biofilm and scales Legionella is less far susceptible to the effects of the most frequently used biocides. The objective of this study was to evaluate the effect of a 4-months continuous injection of a gas mixture (CO2 and inert gas) in the hot water distribution system of a large hotel colonized by L. pneumophila sg3 on limiting biofilm formation and scales and in turn Legionella growth. Before the continuous injection of the gas mixture, out of the 15 sampling points examined every month 60% were colonized by Legionella (mean concentrations of 102 cfu/L in the boilers and the return loop, and 104 cfu/L in taps and showers). One week after the injection of the gas mixture and daily fluxing of the distal outlets, the level of colonization decreased (3 cfu/L). When it was decided to flux all the distal outlets only 1 day per week the mean concentration of Legionella increased again (>104 cfu/L) in all the sampling points. Thus, cleaning of the boilers was performed and distal outlets were again fluxed daily. One week after the level of contamination decreased again (2 cfu/L). Nonetheless, the colonization was not eliminated and when fluxing of the distal outlets was not performed every day the mean concentrations of Legionella raised up to >104 cfu/L. Results indicate that the gas mixture was able to reduce the level of colonization by Legionella only because associated to the fluxing of the distal outlets.
文摘Density, viscosity and sound velocity of six binary liquid mixtures of methanol, ethanol, propanol, butanol, hexanol and octanol with 1,4-dioxane have been measured over the entire range of composition at temperature 303.15K. From the experimental densities, viscosities and sound velocity, the excess molar volume (<i>V<sup>E</sup></i>), deviation in viscosity (Δ<i>η</i>) and deviation in isentropic compressibility (Δ<i>K<sub>S</sub></i>) have been calculated. The results have been used to discuss the nature and strength of intermolecular interactions in these mixtures.
文摘Organic biomass is an attractive feedstock for second generation alcohol production. Wild-type strains of the genus Candida showed capabilities different to produce alcohol fermenting a carbohydrates mixture (synthetic medium), individually and in co-culture. Therefore, the main objective of this work was to evaluate the capability of Candida wild-type strains isolated from termite gut and rumen liquid, to ferment the most commonly carbohydrates presented in citrus residues, individually and in co-culture to alcohol production. C Tropicalis (LR4) presented higher percentage of carbohydrate consumption (74.20% ± 4.60%), alcohol production (44.53 ± 0.01 gLl) and maximal alcohol productivity (6.40 ± 0.01 gL-l day) than C Glabrata (T1). Co-culture schemas, CC1 (LR4: 60%; TI: 40%) and CC3 (first LR4 alone and 2 days later T1) presented the highest alcohol production (45.20 ± 1.30 gL-1 and 46.80 ± 2.60 gL-1, respectively). Maximal alcohol productivity was obtained with CC2 (LR4: 80%; TI: 20%) and CC3 schemas, 7.70 ± 0.29 gL-1 day and 7.80 ± 0.44 gL-l day, respectively. The results suggest the usefulness of these wild-type strains in co-culture as an alternative to alcohol production from carbohydrates mixtures at concentrations commonly found in citrus waste.
基金This work was supported by the Zhejiang Provincial Natural Science Foundation and the Chinese University Doctoral Fund
文摘Pervaporation separation of water-acetic acid mixtures through Poly(AN-co-AA) membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatment with rare earth metal ions could greatly improve the characteristics of the separation of water-acetic acid mixtures.
文摘The ionic liquid (IL)-water mixture pretreated bamboo (Phyllostachys edulis) samples were applied in the research of thermal decomposition. [BMIM]Cl (1-Butyl-3-methylimidazolium chloride)- water and [BMIM]BF4 (1-Butyl-3-methylimidazolium tetrafluoroborate)-water were used in pretreatment process. Compositions of the untreated bamboo and pretreated bamboo were compared. The results of X-ray diffraction analysis (XRD) were analyzed to explain the effect of ILs mixture on cellulose crystalline structure. The pretreated cellulose with [BMIM]Cl- water mixture was tend to produce the more gaseous products, which were associated with the decomposition rate. The behavior of more CO and CH4 gaseous products and less tar in the thermal decomposition products could be attributed to ILs-water mixture pretreatment process. The potential and some problems of ILs-water mixture pretreatment method applied in thermal chemical conversion methods were also discussed.
文摘The development of empirical model for the hydraulic transport of sand-water mixtures is important for the design of economical solid-liquid transportation system in chemical and waste-disposal industries. The hydraulic transport characteristics of sand-water mixtures in circular pipelines are numerically investigated by using the FLUENT commercial software. Eulerian granular multiphase (EGM) model with the k-e turbulent model is used for the computation. Present method is validated by the computed values with the measured data. The effect of the concentration and pipe sizes on the relative solid effect is numerically investigated. It is found that the effect of the volumetric delivered concentration on both hydraulic gradient and solid effect increases as the Reynolds number decreases. When the Reynolds number is small, the increase in the volumetric delivered concentration has an effect of decreasing the hydraulic gradient whereas the solid effect increases with the volumetric delivered concentration stepping up. The effect of the pipe diameter is not the critical parameter for deciding the values of the relative solid effect in the sand-water mixture transportation.
文摘The microscopic properties of NaCl-induced phase separation of acetonitrile (ACN)-water mixtures have been studied by proton nuclear magnetic resonance (1H NMR). Acetonitrile-rich phase increases with increasing NaCl concentration (cNaCl) at xACN ≈ 0.25. 1H chemical shift of water for acetonitrile-rich phase rapidly decreases with decreasing NaCl mole concentration and that for water-rich phase quickly increases with increasing cNaCl. However, 1H chemical shift of acetonitrile has nothing to do with the molar concentration of NaCl, and it keeps relatively stable for all solutions (±0.002). These results reveal that Na+ and Cl- are rapidly hydrated by water, not by acetonitrile. The change of 1H chemical shift of water has shown that the number of hydrogen bond increases or hydrogen bond strengths with increasing NaCl molarity in mixtures. But hydrogen bond is broken or weaken with the temperature rising. 1H chemical shifts of pure water and the water in acetonitrile-rich phase have been investigated at 293 K, 298 K and 303 K. The hydration number of Na+ (6.05) in water-rich phase is determined by an empirical equation involving 1H chemical shift, temperature and NaCl molarity, which is in good agreement with the literatures.
文摘This use of biomass-based adsorbent has been explored for the column study of the adsorptive dehydration of water in ethanol-water mixtures. The column study was carried out using enzyme modified corn starch and the breakthrough curve parameters were used to design the packed bed column. The effect of flow rate on the breakthrough curves revealed that adsorption efficiency decreased with increased inflow rate. The empty bed contact time (τ) of the pilot plant packed column was 35.35 min while the breakthrough time is 40.78 min. 66.7% was the fraction of capacity left unused for the pilot plant from the design.
文摘Novel sorbent hydrogels containing acrylamide/sodium vinylsulfonate, carboxymethyl cellulose and zeolite were synthesized with free radical solution polymerization by using ammonium persulfate/<i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N’</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N’</span></i><span style="font-family:Verdana;">-tetramethylethyle</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">nediamine as redox initiating pair in presence of poly(ethylene glycol) diacrylate as crosslinker. It was to investigate the water uptake properties of series of the novel hydrogels, the semi IPNs and the hybrid/biohybrid composite hydrogel sorbents synthesized in this study. Water uptake studies were performed in water and in water-solvent (acetone, methanol and tetrahydrofuran) binary mixtures at 25</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">C, gravimetrically. Some swelling and diffusion parameters were calculated and discussed. It has been seen that the lower equilibrium swelling factor values in all solvent compositions in comparison with the equilibrium swelling factor values in water.</span></span></span></span>