The operator T from a domain D into the space of measurable functions is called a nonanticipating (causal) operator if the past information is independent from the future outputs. We will study the solution x(t) of a ...The operator T from a domain D into the space of measurable functions is called a nonanticipating (causal) operator if the past information is independent from the future outputs. We will study the solution x(t) of a nonlinear operator differential equation where its changes depends on the causal operator T, and semigroup of operator A(t), and all initial parameters (t0, x0) . The initial information is described x(t)=φ(t) for almost all t ≤t0 and φ(t0) =φ0. We will study the nonlinear variation of parameters (NVP) for this type of nonanticipating operator differential equations and develop Alekseev type of NVP.展开更多
文摘The operator T from a domain D into the space of measurable functions is called a nonanticipating (causal) operator if the past information is independent from the future outputs. We will study the solution x(t) of a nonlinear operator differential equation where its changes depends on the causal operator T, and semigroup of operator A(t), and all initial parameters (t0, x0) . The initial information is described x(t)=φ(t) for almost all t ≤t0 and φ(t0) =φ0. We will study the nonlinear variation of parameters (NVP) for this type of nonanticipating operator differential equations and develop Alekseev type of NVP.