期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进的AlexNet网络的服装廓形识别
1
作者 刘蓉 谢红 《北京服装学院学报(自然科学版)》 CAS 北大核心 2023年第3期64-69,共6页
为了提高服装廓形的识别准确性,实现平面款式图的自动分类和识别,提出了一种基于改进AlexNet网络的服装廓形识别算法。以女裤廓形识别为例,首先,构建了一个包含19000多张女裤平面款式图的数据集,数据集按“S”形、“A”形、“X”形、“... 为了提高服装廓形的识别准确性,实现平面款式图的自动分类和识别,提出了一种基于改进AlexNet网络的服装廓形识别算法。以女裤廓形识别为例,首先,构建了一个包含19000多张女裤平面款式图的数据集,数据集按“S”形、“A”形、“X”形、“O”形、“H”形、“V”形对样本进行标签分类,并划分为训练集、测试集和验证集;然后,构建网络模型对训练集和测试集进行训练;针对平面款式图的图像特点对AlexNet网络进行了改进,通过减小网络深度,在第4层卷积层后引入批归一化操作来防止过拟合,提高模型的泛化性;最后,采用验证集进行模型验证,运用混淆矩阵对模型的验证结果进行可视化。结果表明:改进模型在验证集上的平均准确率为88%,最高类别识别准确率为94%,比改进前的AlexNet网络的识别准确率提高2%,且相较于resnet18等其他网络而言改进后的网络准确率更高,可用于女裤廓形识别。 展开更多
关键词 平面款式图 alexnet网络 女裤廓形 批归一化 混淆矩阵
下载PDF
基于小波AlexNet网络的配电网故障区段定位方法 被引量:16
2
作者 侯思祖 郭威 +1 位作者 王子奇 刘雅婷 《电测与仪表》 北大核心 2022年第3期46-57,共12页
文中提出一种基于深度网络迁移学习的配电网故障区段定位方法。利用小波包变换(WPT)分解配电网各区段的电量信号,将各节点小波包系数按照低频到高频的顺序重新排列获得时频矩阵,通过颜色编码将时频矩阵转成具有图像性质的像素矩阵,像素... 文中提出一种基于深度网络迁移学习的配电网故障区段定位方法。利用小波包变换(WPT)分解配电网各区段的电量信号,将各节点小波包系数按照低频到高频的顺序重新排列获得时频矩阵,通过颜色编码将时频矩阵转成具有图像性质的像素矩阵,像素矩阵囊括了当前系统的工作状况信息,利用迁移学习AlexNet网络,调整网络结构使其适应于配电网故障区段辨识,通过微调的AlexNet网络自主挖掘像素矩阵的故障特征作为预测变量,利用门控循环单元(GRU)、学习向量量化(LVQ)、朴素贝叶斯分类器(NBC)、极限学习机(ELM)、支持向量机(SVM)等模式识别算法进行故障特征分类,从而实现配电网故障区段定位。针对多分支的线缆混合线路进行实验分析,比较5种模式识别算法的分类效果,得到GRU算法准确率可以达到99.92%,证明了该方法不受故障时刻、故障类型和过渡电阻等因素的影响,可满足配电网对故障区段定位准确度和可靠性的需求。 展开更多
关键词 小波包变换 alexnet网络 门控循环单元 时频矩阵 故障区段定位
下载PDF
基于Alexnet网络的绝缘子自爆无人机巡检技术研究 被引量:16
3
作者 李映国 杨宏 +2 位作者 徐郁 周杰 赵家乐 《智慧电力》 北大核心 2021年第8期104-109,共6页
绝缘子是输电系统中与安全相关的关键部件,绝缘子自爆问题的高效快速识别对电力系统的保护具有重要的意义。随着无人机(UAV)相关产业的不断发展,可以采用无人机技术对输电线路进行巡检拍摄。以此为背景提出了一种基于Alexnet网络的绝缘... 绝缘子是输电系统中与安全相关的关键部件,绝缘子自爆问题的高效快速识别对电力系统的保护具有重要的意义。随着无人机(UAV)相关产业的不断发展,可以采用无人机技术对输电线路进行巡检拍摄。以此为背景提出了一种基于Alexnet网络的绝缘子自爆无人机巡检技术。首先,应用无人机巡检这一先进技术得到绝缘子的清晰实时图片。然后,采用Alexnet网络对绝缘子自爆图片进行学习和识别。与传统的识别方法相比,Alexnet网络模型不但结构上有所加深,对卷积的功能也进行了强化,对无人机巡检过程中拍摄的复杂图像进行识别和检测有很好的效果。 展开更多
关键词 绝缘子自爆 alexnet网络 无人机巡检 识别
下载PDF
基于AlexNet网络的动物图片分类 被引量:2
4
作者 周德良 《贵州大学学报(自然科学版)》 2019年第6期73-77,共5页
Caffe是目前广泛应用于计算机视觉处理的深度学习框架之一,支持卷积神经网络的模型训练与预测。本文利用caffe支持的AlexNet卷积神经网络分别基于加载与不加载基础模型两种模式对五类动物图片进行分类学习与训练,发现加载基础模型的网... Caffe是目前广泛应用于计算机视觉处理的深度学习框架之一,支持卷积神经网络的模型训练与预测。本文利用caffe支持的AlexNet卷积神经网络分别基于加载与不加载基础模型两种模式对五类动物图片进行分类学习与训练,发现加载基础模型的网络模型收敛耗时仅2.77 s,测试集准确率接近100%,实用测试准确率达到99%,且训练与测试损失曲线高度重合,但另一模式的网络模型收敛耗时多达68.89 s,测试集准确率仅为95%,实用测试准确率仅94%,且训练与测试损失曲线存在严重分化。图像分类不仅可以对不同物类的图像进行准确分类,同样可以对不同属性、状态或特性的图像进行准确分类。 展开更多
关键词 Caffe alexnet网络 基础模型 图像分类
下载PDF
基于AlexNet网络的服装风格识别分析
5
作者 李淑霞 杨俊成 《微型电脑应用》 2022年第1期48-50,54,共4页
将深度学习引入机器学习使人工智能的研究上了一个新的台阶,深度学习的建模与表征能力强大,在图像处理领域有着非常重要的作用,这为服装风格分类提供了发展机会。为了进一步得到服装图片的风格信息,对原始训练集进行图片增广,扩增数据集... 将深度学习引入机器学习使人工智能的研究上了一个新的台阶,深度学习的建模与表征能力强大,在图像处理领域有着非常重要的作用,这为服装风格分类提供了发展机会。为了进一步得到服装图片的风格信息,对原始训练集进行图片增广,扩增数据集,同时通过训练AlexNet卷积神经网络模型,对扩充数据集进行服装风格分类,从而提高服装风格识别精度。 展开更多
关键词 深度学习 机器学习 alexnet卷积神经网络 服装风格 服装图片
下载PDF
基于改进AlexNet网络的无人机遥感图像分类方法 被引量:2
6
作者 杨珍 郭艳光 鲁晓波 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2023年第3期59-69,共11页
针对传统卫星遥感难以获取相应的高空间分辨率数据,影响农作物的分类准确度的问题,提出一种基于改进AlexNet网络的无人机遥感图像分类方法.首先,为降低方法的复杂度,加快收敛效果,优化改善AlexNet网络模型,仅保留AlexNet网络模型的前5... 针对传统卫星遥感难以获取相应的高空间分辨率数据,影响农作物的分类准确度的问题,提出一种基于改进AlexNet网络的无人机遥感图像分类方法.首先,为降低方法的复杂度,加快收敛效果,优化改善AlexNet网络模型,仅保留AlexNet网络模型的前5个图像处理卷积层;其次,对试验农作物无人机遥感图像进行光谱特性分析,提取各类作物自身的光谱曲线.在此基础上,考虑到农作物在可见光波段的反射率相近,很难依据反射率曲线进行区分,基于改进AlexNet网络的深层卷积结构,依据不同波段内的像素亮度对农作物进行准确分类.最后,利用湖南省长沙市农业科学研究所试验基地实测数据进行算例试验.结果表明:在相同的试验条件下,与SVM-RFE和SVM-SS相比,所提方法对于农作物的总体分类精度均值提升了3.91%以上,Kappa系数均值至少提升了2.20%,可适用于实际场景. 展开更多
关键词 无人机遥感 改进alexnet网络 深度学习 光谱特征 农作物 图像分类
原文传递
基于改进卷积神经网络的中药饮片图像识别 被引量:2
7
作者 李玥辰 赵晓 +1 位作者 王若男 杨晨 《科学技术与工程》 北大核心 2024年第9期3596-3604,共9页
为解决AlexNet网络模型在中药饮片图像识别中存在的识别准确率和鲁棒性不够理想的问题,以常见的50种中药饮片为研究对象,对AlexNet网络模型进行改进优化。首先通过拍摄以及搜索引擎获取中药饮片图像,并对图像进行数据扩充以及细节增强... 为解决AlexNet网络模型在中药饮片图像识别中存在的识别准确率和鲁棒性不够理想的问题,以常见的50种中药饮片为研究对象,对AlexNet网络模型进行改进优化。首先通过拍摄以及搜索引擎获取中药饮片图像,并对图像进行数据扩充以及细节增强预处理。其次对AlexNet网络模型进行优化改进,通过缩减原网络的卷积核个数和卷积核大小、使用全局平均池化(global average pooling,GAP)替代全连接层以减少网络参数;去除局部响应归一化(local response normalization,LRN)层、引入批量归一化(batch normalization,BN)层和使用Lion优化算法替代随机梯度下降(stochastic gradient descent,SGD)优化算法以提高网络训练速度;使用Mish激活函数替代ReLU激活函数和引入通道注意力机制SENet网络以提高模型的识别精度。实验结果表明,改进后的网络模型相比于AlexNet网络模型,平均识别率提高了6.1%,平均损失率下降了14.4%,网络参数由原来的60 M缩减至1 M,该结果表明在中药饮片数据集上,改进后的网络模型具有更高的识别率和更好的鲁棒性,可为中药饮片图像识别领域的进一步发展提供有力支持。 展开更多
关键词 alexnet网络 中药饮片 全局平均池化 Lion优化算法 Mish激活函数 SENet网络
下载PDF
基于条件生成式对抗网络和AlexNet-BiLSTM模型的变电设备缺陷检测 被引量:3
8
作者 李艳丰 刘保辉 +1 位作者 马庆丰 丁柱卫 《东北电力技术》 2023年第7期7-14,共8页
针对巡检机器人拍摄变电设备图像含噪严重、图像模糊和分辨率低影响设备缺陷检测的问题,提出一种基于条件生成式对抗网络和AlexNet-BiLSTM的变电设备缺陷检测方法,实现变电设备缺陷定位与辨识。首先,通过条件生成式对抗网络将模糊图像... 针对巡检机器人拍摄变电设备图像含噪严重、图像模糊和分辨率低影响设备缺陷检测的问题,提出一种基于条件生成式对抗网络和AlexNet-BiLSTM的变电设备缺陷检测方法,实现变电设备缺陷定位与辨识。首先,通过条件生成式对抗网络将模糊图像转换成清晰图像;其次,为了避免大量超参数的设置,提高网络的训练速度,引入迁移学习思想,采用变电设备图像训练预训练的AlexNet网络,通过AlexNet网络提取图像的高维特征向量,利用双向长短时记忆网络(bi-directional long short-term memory, BiLSTM)对提取的特征向量进行分类;最后,在R-CNN框架下完成变电设备缺陷的标注和辨识。试验结果表明,所提方法复原的图像主观视觉效果良好,客观评价指标高,提高了变电设备缺陷检测准确率。 展开更多
关键词 条件生成式对抗网络 alexnet网络 长短时记忆网络 变电设备 缺陷检测
下载PDF
基于改进AlexNet卷积神经网络的人脸表情识别 被引量:28
9
作者 石翠萍 谭聪 +1 位作者 左江 赵可新 《电讯技术》 北大核心 2020年第9期1005-1012,共8页
为了解决传统卷积神经网络用于人脸表情识别准确率不高的问题,提出了一种基于改进深度AlexNet卷积神经网络的表情识别方法。该方法基于AlexNet网络的基本结构,采用单图形处理单元(Graphics Processing Unit,GPU)进行训练,减少了两层卷... 为了解决传统卷积神经网络用于人脸表情识别准确率不高的问题,提出了一种基于改进深度AlexNet卷积神经网络的表情识别方法。该方法基于AlexNet网络的基本结构,采用单图形处理单元(Graphics Processing Unit,GPU)进行训练,减少了两层卷积层和一层全连接层,在每层卷积层后加上批标准化(Batch Normalization,BN)代替原来的局部归一化,并在全连接层后加上Dropout正则化进一步防止过拟合。与AlexNet模型相比,改进的网络结构更简单、复杂度低、参数量少,可以节省大量模型训练时间进行快速预测,且更不易过拟合,同时加快了模型收敛速度,提高了网络泛化能力。在Fer2013数据集以及CK+数据集上进行实验,结果表明,所提方法分别得到了68.85%和97.46%的识别率,较其他人脸表情识别方法的识别率有一定提高。 展开更多
关键词 表情识别 深度学习 alexnet网络 BN算法
下载PDF
基于AlexNet-SN网络的煤与煤矸石分类方法 被引量:2
10
作者 郑爽 梁云浩 +2 位作者 武俊峰 乔壮 刘付刚 《中国矿业》 2022年第6期79-85,共7页
现有煤矸石分选方法主要依据人工设计特征对煤矸石进行识别,但特征提取过程复杂,准确率也较低。随着人工智能技术的快速发展,智能选矸成为解决煤矸石分拣问题的重要研究方向。为提高煤与煤矸石分类准确率,本文提出了一种基于AlexNet网... 现有煤矸石分选方法主要依据人工设计特征对煤矸石进行识别,但特征提取过程复杂,准确率也较低。随着人工智能技术的快速发展,智能选矸成为解决煤矸石分拣问题的重要研究方向。为提高煤与煤矸石分类准确率,本文提出了一种基于AlexNet网络和风格迁移技术改进的煤矸石分拣方法。选用3×3的卷积核代替原AlexNet网络前几层中较大的卷积核,利用BN层代替LRN层和Dropout,并采用风格迁移数据增强法提高煤与煤矸石数据集的多样性。研究结果表明,与原始的AlexNet网络相比,该方法的准确率提高了1.8%,损失率下降了2.0%。此方法不仅能够满足煤与煤矸石实时检测的要求,而且具有更高的识别精度,能有效应用于煤矸石识别。 展开更多
关键词 alexnet网络 煤矸石 人工智能 分选技术
下载PDF
基于卷积神经网络的手写数字识别技术研究
11
作者 余国庆 杨燕婷 +3 位作者 宗兆星 刘光宇 赵恩铭 周豹 《安徽电子信息职业技术学院学报》 2024年第3期1-5,共5页
手写数字识别与我们的生活和工作息息相关,传统的人工判断手写数字方式需要耗费大量精力,并且存在准确性不高和时效性不能保证的弊端。为解决这一问题,采用卷积神经网络方法来进行手写数字识别。首先将MNIST数据集划分为训练集与测试集... 手写数字识别与我们的生活和工作息息相关,传统的人工判断手写数字方式需要耗费大量精力,并且存在准确性不高和时效性不能保证的弊端。为解决这一问题,采用卷积神经网络方法来进行手写数字识别。首先将MNIST数据集划分为训练集与测试集,其次在MATLAB上搭建训练LeNet-5与AlexNet两种卷积神经网络模型,之后将测试集导入模型,测试性能,最后再将验证集导入验证模型性能。实验结果表明,AlexNet模型对验证集识别率高于LeNet-5模型,且AlexNet模型的稳定性优于LeNet-5。 展开更多
关键词 LeNet-5卷积神经网络 手写数字识别 MNIST数据集 alexnet卷积神经网络
下载PDF
基于轻量AlexNet的电容型电压互感器故障诊断
12
作者 漆梓渊 吴浩 +2 位作者 陈伟哲 罗春兰 吴杰 《四川电力技术》 2024年第1期91-97,共7页
电容型电压互感器(CVT)是重要的一次侧电压监测元件。针对环境温度、湿度以及元件老化等因素造成的电容型电压互感器一次侧电容上下臂击穿或互感器二次侧短路等故障,提出了一种基于轻量AlexNet的电容型电压互感器故障诊断方法。该方法利... 电容型电压互感器(CVT)是重要的一次侧电压监测元件。针对环境温度、湿度以及元件老化等因素造成的电容型电压互感器一次侧电容上下臂击穿或互感器二次侧短路等故障,提出了一种基于轻量AlexNet的电容型电压互感器故障诊断方法。该方法利用Matlab建立了CVT电路模型,分别对高压臂电容击穿、低压臂电容击穿以及互感器二次侧短路3种典型的故障进行仿真。采集CVT二次侧电压数据,利用马尔可夫变迁场将其转化为特征矩阵,最后使用轻量化的AlexNet神经网络对电压特征矩阵进行故障分类。仿真实验证明,所提方法在不拆除CVT的情况下,能准确检测出CVT的故障类型。 展开更多
关键词 电容型电压互感器 特征提取 alexnet神经网络 故障诊断
下载PDF
基于AlexNet卷积神经网络的大米产地高光谱快速判别 被引量:13
13
作者 吴静珠 李晓琪 +3 位作者 林珑 刘翠玲 刘志 袁玉伟 《中国食品学报》 EI CAS CSCD 北大核心 2022年第1期282-288,共7页
采集我国东北和非东北10个产地、4个品种共计1000份单粒大米样本在波长950~1700 nm区间的高光谱图像,按照单粒大米轮廓提取感兴趣区域并计算平均光谱,采用主成分分析从样本集光谱矩阵提取累计贡献率大于99%的第一、二主成分,根据载荷矩... 采集我国东北和非东北10个产地、4个品种共计1000份单粒大米样本在波长950~1700 nm区间的高光谱图像,按照单粒大米轮廓提取感兴趣区域并计算平均光谱,采用主成分分析从样本集光谱矩阵提取累计贡献率大于99%的第一、二主成分,根据载荷矩阵系数最大值筛选与第一、二主成分相关性最强的特征波长1396.67 nm和1467.38 nm。针对两组特征波长图像进行主成分分析,分别选取前三维主成分,共计可得2×3组训练样本集。结果表明:基于AlexNet卷积神经网络训练建立6组东北/非东北大米产地高光谱快速判别模型,均有较高的识别准确率,其中基于1467.38 nm波长的第三主成分图像建立的东北/非东北大米产地判别模型的性能最佳,其识别准确率可达99.5%。 展开更多
关键词 高光谱 大米产地鉴别 主成分分析 alexnet卷积神经网络
下载PDF
基于AlexNet卷积神经网络的激光雷达飞机尾涡识别研究 被引量:16
14
作者 潘卫军 段英捷 +2 位作者 张强 吴郑源 刘皓晨 《光电工程》 CAS CSCD 北大核心 2019年第7期123-130,共8页
为解决飞机尾涡威胁后机飞行安全问题,保障空中交通安全,提高机场和空域容量,提出了一种基于AlexNet卷积神经网络模型的算法,实现飞机尾涡的准确识别。结合多普勒激光雷达探测原理和Hallck-Burnham尾涡速度经典模型,构建了AlexNet神经... 为解决飞机尾涡威胁后机飞行安全问题,保障空中交通安全,提高机场和空域容量,提出了一种基于AlexNet卷积神经网络模型的算法,实现飞机尾涡的准确识别。结合多普勒激光雷达探测原理和Hallck-Burnham尾涡速度经典模型,构建了AlexNet神经网络模型提取大气风场中的尾涡速度云图的图像特征,识别飞机尾涡。研究表明,该模型能够准确识别目标空域中的飞机尾涡,网络模型收敛后对尾涡识别的准确率高达91.30%,并具有低虚警率,能有效地实现对飞机尾涡的识别和预警,达到尾涡监测的目的。 展开更多
关键词 尾涡识别 alexnet卷积神经网络 目标识别 多普勒激光雷达
下载PDF
基于改进ALEXNET卷积神经网络的电容层析成像三维图像重建 被引量:5
15
作者 李岩 王璐 李佳琪 《哈尔滨理工大学学报》 CAS 北大核心 2020年第4期109-115,共7页
针对卷积神经网络三维图像重建算法的样本训练速度慢和成像精度低的问题,提出一种根据不同流型的AlexNet神经网络数据训练方法。首先通过SVM算法将输入的电容样本数据按照流型分类,然后采用单一流型样本数据训练相应的AlexNet卷积神经网... 针对卷积神经网络三维图像重建算法的样本训练速度慢和成像精度低的问题,提出一种根据不同流型的AlexNet神经网络数据训练方法。首先通过SVM算法将输入的电容样本数据按照流型分类,然后采用单一流型样本数据训练相应的AlexNet卷积神经网络,使得某一流型的神经网络的输入样本数据类型简单、样本数量少和神经网络规模小。同时采用具有冲量和自适应学习速率的Adam算法,减少了训练时的误差振荡,加速神经网络的收敛。通过对比改进的AlexNet卷积神经网络算法和LBP算法的成像结果,表明优化后的AlexNet在成像精度和速度上有显著提升。 展开更多
关键词 电容层析成像 三维图像重建 alexnet卷积神经网络 Adam梯度下降算法
下载PDF
Alexnet卷积神经网络辨识幽门螺杆菌阳性舌象的可行性研究 被引量:3
16
作者 宋晓宾 李奕 +3 位作者 李冬 任健 李修阳 马柯 《山东中医杂志》 2021年第3期235-238,共4页
目的:探索从舌象图像分析判断幽门螺杆菌(Hp)感染的可行诊断技术。方法:引入Alexnet卷积神经网络概念,通过现代技术对舌象图像分类、识别、计算,以实现对Hp舌象精准客观诊断的功能。结果:通过研究中医舌诊与消化系统的关联、舌象图像可... 目的:探索从舌象图像分析判断幽门螺杆菌(Hp)感染的可行诊断技术。方法:引入Alexnet卷积神经网络概念,通过现代技术对舌象图像分类、识别、计算,以实现对Hp舌象精准客观诊断的功能。结果:通过研究中医舌诊与消化系统的关联、舌象图像可特定性识别的原因以及深度学习Alexnet卷积神经网络结构,论证了该方法对Hp阳性舌象分类模型辨识具有可行性。结论:运用Alexnet卷积神经网络实现辨识Hp感染,将有助于补充与完善中医舌象现代诊断,是实现中医诊疗标准化与客观化的重要技术手段之一。 展开更多
关键词 alexnet卷积神经网络 幽门螺杆菌 舌象 诊断标准化 诊断客观化 可行性研究
下载PDF
基于AlexNet卷积神经网络模型的宁夏天然地震和非天然地震识别研究 被引量:1
17
作者 任家琪 周少辉 +2 位作者 余思汗 胡子琪 唐浩 《防灾减灾学报》 2022年第4期45-50,共6页
宁夏回族自治区及周边天然地震和非天然地震频发,精确快速识别天然和非天然地震有利于震后应急响应、科学研究、赈灾救援等工作。基于AlexNet卷积神经网络模型,选取宁夏境内及周边130个地震事件(天然地震80个、非天然地震50个),对其进... 宁夏回族自治区及周边天然地震和非天然地震频发,精确快速识别天然和非天然地震有利于震后应急响应、科学研究、赈灾救援等工作。基于AlexNet卷积神经网络模型,选取宁夏境内及周边130个地震事件(天然地震80个、非天然地震50个),对其进行了单个台站波形记录地震事件的训练和多个台站波形记录地震事件的测试,并将模型结果与宁夏测震台网人工编目结果进行比对,结果表明单个台站波形记录地震事件的训练结果中,AlexNet卷积神经网络模型对宁夏天然地震和非天然地震的正确识别率为99%;多个台站波形记录地震事件的测试结果中,此模型对宁夏天然地震和非天然地震的正确识别率为97.01%。AlexNet卷积神经网络模型作为人工智能领域的成熟技术之一,可以很好的运用于宁夏天然地震和非天然地震的识别工作之中。 展开更多
关键词 宁夏天然地震和非天然地震 alexnet卷积神经网络模型 地震类型识别
下载PDF
基于复Morlet变换和改进AlexNet神经网络的柴油机气门间隙异常故障诊断方法 被引量:5
18
作者 赵志坚 茆志伟 +1 位作者 张进杰 江志农 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期64-70,共7页
针对柴油机缸盖振动信号非线性、非平稳的特点,以及传统故障诊断方法需要先验知识且特征提取费时费力的缺点,提出了一种基于复Morlet变换和改进AlexNet神经网络的柴油机气门间隙异常故障诊断方法。首先通过复Morlet小波将柴油机缸盖振... 针对柴油机缸盖振动信号非线性、非平稳的特点,以及传统故障诊断方法需要先验知识且特征提取费时费力的缺点,提出了一种基于复Morlet变换和改进AlexNet神经网络的柴油机气门间隙异常故障诊断方法。首先通过复Morlet小波将柴油机缸盖振动信号转换为时频图,该变换包含了信号的时频域信息,比单一的时域或频域信号更适合分析柴油机缸盖振动这种非平稳信号;其次将时频图输入至AlexNet神经网络进行特征自动提取并建立故障诊断模型,解决了传统手工提取特征费时费力且需要专家经验的问题;然后通过Batch Normalization和Dropout技术改进网络结构,并优化神经网络超参数以提高模型的准确度和计算效率;最后将本文方法与传统的故障诊断方法应用于柴油机气门间隙异常故障诊断并进行对比,发现其诊断准确率最高,验证了所提方法的优越性。 展开更多
关键词 柴油机 故障诊断 复Morlet变换 alexnet神经网络
下载PDF
基于改进AlexNet卷积神经网络的手写体数字识别 被引量:9
19
作者 谢东阳 李丽宏 苗长胜 《河北工程大学学报(自然科学版)》 CAS 2021年第4期102-106,共5页
为了提高手写体数字的识别率,在AlexNet网络模型的基础上进行改进,引入Inception-resnet模块替换模型中的Conv3和Conv4来提升模型的特征提取能力;使用批归一化处理(BN)方法加快网络的收敛速度,防止过拟合;减少卷积核的数量,提升网络的... 为了提高手写体数字的识别率,在AlexNet网络模型的基础上进行改进,引入Inception-resnet模块替换模型中的Conv3和Conv4来提升模型的特征提取能力;使用批归一化处理(BN)方法加快网络的收敛速度,防止过拟合;减少卷积核的数量,提升网络的训练速度。在MNIST数据集上进行训练与测试,实验结果表明改进的网络模型具有较高的检测精度,达到了0.9966,证明了本算法的有效性。 展开更多
关键词 手写数字识别 alexnet卷积神经网络 Inception-resnet模块 批归一化处理
下载PDF
基于AlexNet卷积神经网络的5G信号调制方式识别 被引量:2
20
作者 张清 胡国兵 赵嫔姣 《信息化研究》 2020年第2期36-43,共8页
针对非协作条件下信号调制识别对信号的先验信息要求较高,且人工选取特征复杂等问题,文章提出一种基于AlexNet卷积神经网络的5G信号调制方式识别算法。针对π/2-BPSK、QPSK、16QAM、64QAM、256QAM这5种常用5G信号(3GPP R15协议建议),选... 针对非协作条件下信号调制识别对信号的先验信息要求较高,且人工选取特征复杂等问题,文章提出一种基于AlexNet卷积神经网络的5G信号调制方式识别算法。针对π/2-BPSK、QPSK、16QAM、64QAM、256QAM这5种常用5G信号(3GPP R15协议建议),选择其星座图作为AlexNet网络的输入特征,构建识别分类算法。仿真结果表明,该算法在15dB信噪比下对5种常用5G信号的平均识别正确率达90%,相较于已有基于信号散布图特征的识别算法,其性能更优。 展开更多
关键词 调制识别 alexnet卷积神经网络 星座图 5G信号
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部