Large-scale inverted-V channels of upflowing oxygen ions are frequently identified in data collected by Cluster,at all local times,near the open-closed field line boundary over Earth’s high-latitude ionosphere-occur ...Large-scale inverted-V channels of upflowing oxygen ions are frequently identified in data collected by Cluster,at all local times,near the open-closed field line boundary over Earth’s high-latitude ionosphere-occur with downward propagating MHD Alfvén waves which have cascaded into kinetic regimes of plasma.The transverse acceleration of the oxygen ions in the center of these structures is interpreted as the integrated energization by these waves along the channels.Also observed within the channels are upward parallel electric fields,a key characteristic of kinetic Alfvén waves,which may contribute not only to lifting the ions but also to precipitating aurora electrons that might initiate ion upflow in the ionosphere below.Statistics on five-year observations of Cluster show that the channels typically form during geomagnetic perturbations,particularly when solar-wind dynamic pressure is high or highly fluctuated.Near the open-closed field line boundary,the stronger the wave power,the higher the upward oxygen flux and the higher the beam energy,indicating that these waves provide a simple but efficient way to drive oxygen upflows.展开更多
Most protons in the solar wind belong to one of two different populations,the less dense beam protons and the denser core protons.The beam protons,with a velocity of(1-2)V_(A)(V_(A)is the local Alfvén speed),alwa...Most protons in the solar wind belong to one of two different populations,the less dense beam protons and the denser core protons.The beam protons,with a velocity of(1-2)V_(A)(V_(A)is the local Alfvén speed),always drift relative to the core protons;this kind of distribution is unstable and stimulates several kinds of wave mode.In this study,using a 2 D hybrid simulation model,we find that the original right-handed elliptically polarized Alfvén waves become linearly polarized,and eventually become right-handed and circularly polarized.Given that linearly polarized waves are a superposition of left-handed and right-handed waves,cyclotron resonance in the right-handed/left-handed component heats beam/core protons perpendicularly.The resonance between beam protons and right-handed polarized waves is stronger when the beam relative density is lower,resulting in more dramatic perpendicular heating of beam protons,whereas the situation is reversed when the beam relative density is larger.展开更多
Through the use of a reductive perturbation technique, solitary kinetic Alfvén waves(KAWs) are investigated in a low but finite b(particle-to-magnetic pressure ratio) dense electron–positron–ion plasma wher...Through the use of a reductive perturbation technique, solitary kinetic Alfvén waves(KAWs) are investigated in a low but finite b(particle-to-magnetic pressure ratio) dense electron–positron–ion plasma where electrons and positrons are degenerate. The degenerate plasma model considered here permits the existence of sub-Alfvénic compressive solitary KAWs. The influence of r(equilibrium positron-to-ion density ratio), sF(electron-to-positron Fermi temperature ratio), b and obliqueness parameter lzon various characteristics of solitary KAWs are examined through numerical plots. We have shown that there exists a critical value of lzat which a soliton width attains its maximum value which decreases with an increase in r and sF.It is also found that solitons with a higher energy propagate more obliquely in the direction of an ambient magnetic field. The results of the present investigation may be useful for understanding low frequency nonlinear electromagnetic wave propagation in magnetized electron–positron–ion plasmas in dense stars. Specifically, the relevance of our investigation to a pulsar magnetosphere is emphasized.展开更多
At the Earth's magnetopause, the electron transport due to kinetic Alfvén waves(KAWs) is investigated in an ion-scale flux rope by the Magnetospheric Multiscale mission. Clear electron dropout around 90° ...At the Earth's magnetopause, the electron transport due to kinetic Alfvén waves(KAWs) is investigated in an ion-scale flux rope by the Magnetospheric Multiscale mission. Clear electron dropout around 90° pitch angle is observed throughout the flux rope, where intense KAWs are identified. The KAWs can effectively trap electrons by the wave parallel electric field and the magnetic mirror force, allowing electrons to undergo Landau resonance and be transported into more field-aligned directions. The pitch angle range for the trapped electrons is estimated from the wave analysis, which is in good agreement with direct pitch angle measurements of the electron distributions. The newly formed beam-like electron distribution is unstable and excites whistler waves,as revealed in the observations. We suggest that KAWs could be responsible for the plasma depletion inside a flux rope by this transport process, and thus be responsible for the formation of a typical flux rope.展开更多
Characterizing the gap eigenmode of shear Alfv′en waves(SAWs) and its interaction with energetic ions is important to the success of magnetically confined fusion. Previous studies have reported an experimental observ...Characterizing the gap eigenmode of shear Alfv′en waves(SAWs) and its interaction with energetic ions is important to the success of magnetically confined fusion. Previous studies have reported an experimental observation of the spectral gap of SAW on the on Large Plasma Device(LAPD)(Zhang et al. 2008 Phys. Plasmas 15 012103), a linear large plasma device(Gekelman et al. 1991 Rev. Sci. Instrum. 62 2875) possessing easier diagnostic access and lower cost compared with traditional fusion devices, and analytical theory and numerical gap eigenmode using ideal conditions(Chang 2014 Ph.D Thesis at Australian National University). To guide experimental implementation, the present work models the gap eigenmode of SAWs using exact LAPD parameters. A full picture of the wave field for previous experiment reveals that the previously observed spectral gap is not global but an axially local result. To form a global spectral gap, the number of magnetic mirrors has to be increased and stronger static magnetic field makes it clearer. Such a spectral gap is obtained for the magnetic field of B0(z) = 1.2 + 0.6 cos[2π(z-33.68)/3.63] with 7.74-m magnetic beach. By introducing two types of local defects(corresponding to Eθ(z0) = 0 and E’θ(z0) = 0 respectively), odd-parity and even-parity discrete eigenmodes are formed clearly inside the gap. The strength of these gap eigenmodes decreases significantly with collision frequency, which is consistent with previous studies. Parameter scans show that these gap eigenmodes can be even formed successfully for the field strength of B0(z) = 0.2 + 0.1 cos[2π(z-33.68)/3.63] and with only four magnetic mirrors, which are achievable by the LAPD at its present status. This work can serve as a strong motivation and direct reference for the experimental implementation of the gap eigenmode of SAWs on the LAPD and other linear plasma devices.展开更多
Kinetic Alfvén waves(KAWs),with a strong parallel disturbed electric field,play an important role in energy transport and particle acceleration in the magnetotail.On the basis of high-resolution observations of t...Kinetic Alfvén waves(KAWs),with a strong parallel disturbed electric field,play an important role in energy transport and particle acceleration in the magnetotail.On the basis of high-resolution observations of the Magnetospheric Multiscale(MMS)Mission,we present a detailed description of the acceleration process of electrons by KAWs in the plasma sheet boundary layer(PSBL).The MMS observed strong electromagnetic disturbances carrying a parallel disturbed electric field with an amplitude of up to 8 mV/m.The measured ratio of the electric to magnetic field perturbations was larger than the local Alfvén speed and was enhanced as the frequency increased,consistent with the theoretical predictions for KAWs.This evidence indicates that the electromagnetic disturbances should be identified as KAWs.During the KAWs,the energy flux of electrons at energies above 1 keV in the parallel and anti-parallel directions are significantly enhanced,implying occurrences of electron beams at higher energies.Additionally,the KAWs became more electrostaticlike and filled with high-frequency ion acoustic waves.The energy enhancement of electron beams is in accordance with the derived work done with the observed parallel disturbed electric field of KAWs,indicating electron acceleration caused by KAWs.Therefore,these results provide direct evidence of electron acceleration by KAWs embodying electrostatic ion acoustic waves in the PSBL.展开更多
The dispersion relation and damping rate of kinetic Alfvén waves(KAWs) in a deuterium-tritium fusion plasma with slowing-down distributed α-particles are investigated using the kinetic theory. The variations of ...The dispersion relation and damping rate of kinetic Alfvén waves(KAWs) in a deuterium-tritium fusion plasma with slowing-down distributed α-particles are investigated using the kinetic theory. The variations of wave frequency and damping rate with respect to the α concentration(n_(α)/n_(e)) and perpendicular wave number(k_(⊥)) are studied from a numerical way. The results show that the fluctuation of α concentration slightly affects the frequency and damping rate of KAWs at low n_(α)/n_(e). In addition, the frequency and the damping rate increase as the k_(⊥) and the background temperature Te increase. For comparison, the calculations are performed also in the case of α-particles following an equivalent Maxwellian distribution. For a given k_(⊥), the value of the frequency obtained in the slowing-down distribution case is smaller than that obtained in the Maxwellian distribution case. Conversely, the value of the damping rate obtained in the slowing-down distribution case is slightly larger than that obtained in the Maxwellian distribution case.展开更多
In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The revers...In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.展开更多
The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature va...The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature variations on the Alfvén resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfvén resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi\|quadratic relation with the Alfvén field, which directly inspires the formation of cross\|spectrum between ULF waves and HF waves and results in spectral peaks at some gyro\|frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high\|speed flyer and the drifting electrons and the frequency shift from the phase variation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.展开更多
In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The struc...In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.展开更多
We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be ...We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be locally peaked at the magnetic equator.Perpendicular fluxes of ions(<100 eV)increase simultaneously with the appearances of EMIC waves,indicating a heating of these ions by EMIC waves.In addition,the measured ion distributions also support the equatorial peak formation,which accords with the result of the frequency analyses.The formation of local mass density peaks at the equator should be due to enhancements of equatorial ion concentrations,which are triggered by EMIC waves’perpendicular heating on low energy ions.展开更多
The stability features of discrete Alfvén eigenmodes(αTAEs) trapped by α-induced potential wells are explored in the China Fusion Engineering Test Reactor(CFETR) advanced steady-state operation environment, whe...The stability features of discrete Alfvén eigenmodes(αTAEs) trapped by α-induced potential wells are explored in the China Fusion Engineering Test Reactor(CFETR) advanced steady-state operation environment, where α denotes a measure of the pressure gradient. For the reversed magnetic shear(RS) H-mode scenario with an enhanced internal transport barrier(ITB), the αTAEs are trapped in the electron cyclotron(EC) power deposition region and the effects of different pedestals on αTAEs are analyzed. For the negative off-axis magnetic shear scenario, the αTAEs are discussed, and the effect of different magnetic shears on the α TAEs is presented. Finally, the effects of beam energies and pitch-angle distributions onαTAE stability are also presented.展开更多
Application of sound waves is one of the novel techniques for the improvement of water treatment process. In this study, various sound waves such as 1) ultrasonic wave, 2) music box, and 3) windbell were irradiated to...Application of sound waves is one of the novel techniques for the improvement of water treatment process. In this study, various sound waves such as 1) ultrasonic wave, 2) music box, and 3) windbell were irradiated to water and wastewater for removing contaminants such as nitrate, phosphorus and BOD/COD. As a result, a possibility of improvement of water and wastewater treatment process using sound waves with various frequencies was proposed.展开更多
The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics(MHD). It is well known that a decrease in magnetic energy is proportion...The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics(MHD). It is well known that a decrease in magnetic energy is proportional to the reconnection rate. It is found that an instantaneous increase in Alfvén wave energy in unit Alfvén time is the square dependence on the reconnection rate. The converted Alfvén wave energy is strongly enhanced due to the large increase in the reconnection rate in Hall MHD. For solar-terrestrial plasmas, the maximum converted Alfvén wave energy in unit Alfvén time with the Hall effect can be over 50 times higher than that without the Hall effect during magnetic reconnection.展开更多
The inhomogeneity is introduced by a nonzero density gradient which separates the plasma into two different regions where plasma density are constant.The Alfvén waves,the phase mixing and the fast magnetosonic wa...The inhomogeneity is introduced by a nonzero density gradient which separates the plasma into two different regions where plasma density are constant.The Alfvén waves,the phase mixing and the fast magnetosonic wave are excited by the boundary condition in inhomogeneous magnetized plasma.By using the Hall–magnetohydrodynamics(MHD)model,it is found that there are Alfvén waves in the homogeneous regions,while the phase mixing appears in the inhomogeneous region.The interesting result is that a fast magnetosonic wave is excited in a different direction which has a nonzero angle between the wave propagation direction and the direction of the background magnetic field.The dependence of the propagation direction of the excited fast magnetosonic wave and its strength of the magnetic field on the plasma parameters are given numerically.The results show that increasing both the driving frequency and the ratio of magnetic pressure to thermal pressure will increase the acceleration of the electrons.The electron acceleration also depends on the inhomogeneity parameters.展开更多
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The...This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
Kinematic dynamo problem is studied with tsunami motion in open oceans. Using long wave approximation, a series solution of the dynamo problem is established with fast convergent rate based on a small parameter relati...Kinematic dynamo problem is studied with tsunami motion in open oceans. Using long wave approximation, a series solution of the dynamo problem is established with fast convergent rate based on a small parameter relating water wave dispersive effects. Taking solitary wave and single wave as typical tsunami wave models, the magnitude of tsunami induced magnetic field is estimated at the order of 10 nano Tesla (nT) just over sea level and 1 nT at altitudes of several hundreds kilometers, respectively, depending on the wave parameters as well as earth magnetic field. The space and time behavior of the magnetic field predicted by present model shows fairly similarity with the field data at Easter Island during 2010 Chile tsunami.展开更多
基金supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences, Grant No. XDB41000000the National Natural Science Foundation of China (41731068, 41941001)
文摘Large-scale inverted-V channels of upflowing oxygen ions are frequently identified in data collected by Cluster,at all local times,near the open-closed field line boundary over Earth’s high-latitude ionosphere-occur with downward propagating MHD Alfvén waves which have cascaded into kinetic regimes of plasma.The transverse acceleration of the oxygen ions in the center of these structures is interpreted as the integrated energization by these waves along the channels.Also observed within the channels are upward parallel electric fields,a key characteristic of kinetic Alfvén waves,which may contribute not only to lifting the ions but also to precipitating aurora electrons that might initiate ion upflow in the ionosphere below.Statistics on five-year observations of Cluster show that the channels typically form during geomagnetic perturbations,particularly when solar-wind dynamic pressure is high or highly fluctuated.Near the open-closed field line boundary,the stronger the wave power,the higher the upward oxygen flux and the higher the beam energy,indicating that these waves provide a simple but efficient way to drive oxygen upflows.
基金supported by National Natural Science Foundation of China(Nos.11822401,41674177 and 41874208).
文摘Most protons in the solar wind belong to one of two different populations,the less dense beam protons and the denser core protons.The beam protons,with a velocity of(1-2)V_(A)(V_(A)is the local Alfvén speed),always drift relative to the core protons;this kind of distribution is unstable and stimulates several kinds of wave mode.In this study,using a 2 D hybrid simulation model,we find that the original right-handed elliptically polarized Alfvén waves become linearly polarized,and eventually become right-handed and circularly polarized.Given that linearly polarized waves are a superposition of left-handed and right-handed waves,cyclotron resonance in the right-handed/left-handed component heats beam/core protons perpendicularly.The resonance between beam protons and right-handed polarized waves is stronger when the beam relative density is lower,resulting in more dramatic perpendicular heating of beam protons,whereas the situation is reversed when the beam relative density is larger.
文摘Through the use of a reductive perturbation technique, solitary kinetic Alfvén waves(KAWs) are investigated in a low but finite b(particle-to-magnetic pressure ratio) dense electron–positron–ion plasma where electrons and positrons are degenerate. The degenerate plasma model considered here permits the existence of sub-Alfvénic compressive solitary KAWs. The influence of r(equilibrium positron-to-ion density ratio), sF(electron-to-positron Fermi temperature ratio), b and obliqueness parameter lzon various characteristics of solitary KAWs are examined through numerical plots. We have shown that there exists a critical value of lzat which a soliton width attains its maximum value which decreases with an increase in r and sF.It is also found that solitons with a higher energy propagate more obliquely in the direction of an ambient magnetic field. The results of the present investigation may be useful for understanding low frequency nonlinear electromagnetic wave propagation in magnetized electron–positron–ion plasmas in dense stars. Specifically, the relevance of our investigation to a pulsar magnetosphere is emphasized.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41474145,41574159,41731070 and 41504114the Frontier Science Foundation of the Chinese Academy of Sciences under Grant No QYZDJ-SSW-JSC028+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA15052500the Specialized Research Fund for State Key Laboratories of China
文摘At the Earth's magnetopause, the electron transport due to kinetic Alfvén waves(KAWs) is investigated in an ion-scale flux rope by the Magnetospheric Multiscale mission. Clear electron dropout around 90° pitch angle is observed throughout the flux rope, where intense KAWs are identified. The KAWs can effectively trap electrons by the wave parallel electric field and the magnetic mirror force, allowing electrons to undergo Landau resonance and be transported into more field-aligned directions. The pitch angle range for the trapped electrons is estimated from the wave analysis, which is in good agreement with direct pitch angle measurements of the electron distributions. The newly formed beam-like electron distribution is unstable and excites whistler waves,as revealed in the observations. We suggest that KAWs could be responsible for the plasma depletion inside a flux rope by this transport process, and thus be responsible for the formation of a typical flux rope.
基金Project supported by the National Natural Science Foundation of China(Grant No.11405271)the China Postdoctoral Science Foundation(Grant No.2017M612901)+4 种基金the Fund from Chongqing Science and Technology Commission(Grant No.cstc2017jcyjAX0047)Chongqing Postdoctoral Special Foundation(Grant No.Xm2017109)the Fundamental Research Funds for Central Universities,China(Grant No.YJ201796)the Pre-research Key Laboratory Fund for Equipment(Grant No.61422070306)the Fund from the Laboratory of Advanced Space Propulsion(Grant No.LabASP-2017-10)
文摘Characterizing the gap eigenmode of shear Alfv′en waves(SAWs) and its interaction with energetic ions is important to the success of magnetically confined fusion. Previous studies have reported an experimental observation of the spectral gap of SAW on the on Large Plasma Device(LAPD)(Zhang et al. 2008 Phys. Plasmas 15 012103), a linear large plasma device(Gekelman et al. 1991 Rev. Sci. Instrum. 62 2875) possessing easier diagnostic access and lower cost compared with traditional fusion devices, and analytical theory and numerical gap eigenmode using ideal conditions(Chang 2014 Ph.D Thesis at Australian National University). To guide experimental implementation, the present work models the gap eigenmode of SAWs using exact LAPD parameters. A full picture of the wave field for previous experiment reveals that the previously observed spectral gap is not global but an axially local result. To form a global spectral gap, the number of magnetic mirrors has to be increased and stronger static magnetic field makes it clearer. Such a spectral gap is obtained for the magnetic field of B0(z) = 1.2 + 0.6 cos[2π(z-33.68)/3.63] with 7.74-m magnetic beach. By introducing two types of local defects(corresponding to Eθ(z0) = 0 and E’θ(z0) = 0 respectively), odd-parity and even-parity discrete eigenmodes are formed clearly inside the gap. The strength of these gap eigenmodes decreases significantly with collision frequency, which is consistent with previous studies. Parameter scans show that these gap eigenmodes can be even formed successfully for the field strength of B0(z) = 0.2 + 0.1 cos[2π(z-33.68)/3.63] and with only four magnetic mirrors, which are achievable by the LAPD at its present status. This work can serve as a strong motivation and direct reference for the experimental implementation of the gap eigenmode of SAWs on the LAPD and other linear plasma devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.41925018,41874194).
文摘Kinetic Alfvén waves(KAWs),with a strong parallel disturbed electric field,play an important role in energy transport and particle acceleration in the magnetotail.On the basis of high-resolution observations of the Magnetospheric Multiscale(MMS)Mission,we present a detailed description of the acceleration process of electrons by KAWs in the plasma sheet boundary layer(PSBL).The MMS observed strong electromagnetic disturbances carrying a parallel disturbed electric field with an amplitude of up to 8 mV/m.The measured ratio of the electric to magnetic field perturbations was larger than the local Alfvén speed and was enhanced as the frequency increased,consistent with the theoretical predictions for KAWs.This evidence indicates that the electromagnetic disturbances should be identified as KAWs.During the KAWs,the energy flux of electrons at energies above 1 keV in the parallel and anti-parallel directions are significantly enhanced,implying occurrences of electron beams at higher energies.Additionally,the KAWs became more electrostaticlike and filled with high-frequency ion acoustic waves.The energy enhancement of electron beams is in accordance with the derived work done with the observed parallel disturbed electric field of KAWs,indicating electron acceleration caused by KAWs.Therefore,these results provide direct evidence of electron acceleration by KAWs embodying electrostatic ion acoustic waves in the PSBL.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11863004 and 11763006)the Jiangxi Provincial Key Laboratory of Fusion and Information Control, China (Grant No. 20171BCD40005)the Project of Scientific and Technological Innovation Base of Jiangxi Province, China (Grant No. 20203CCD46008)。
文摘The dispersion relation and damping rate of kinetic Alfvén waves(KAWs) in a deuterium-tritium fusion plasma with slowing-down distributed α-particles are investigated using the kinetic theory. The variations of wave frequency and damping rate with respect to the α concentration(n_(α)/n_(e)) and perpendicular wave number(k_(⊥)) are studied from a numerical way. The results show that the fluctuation of α concentration slightly affects the frequency and damping rate of KAWs at low n_(α)/n_(e). In addition, the frequency and the damping rate increase as the k_(⊥) and the background temperature Te increase. For comparison, the calculations are performed also in the case of α-particles following an equivalent Maxwellian distribution. For a given k_(⊥), the value of the frequency obtained in the slowing-down distribution case is smaller than that obtained in the Maxwellian distribution case. Conversely, the value of the damping rate obtained in the slowing-down distribution case is slightly larger than that obtained in the Maxwellian distribution case.
基金supported by National Natural Science Foundation of China (Nos. 12205251, 12275236 and 12261131622)Italian Ministry for Foreign Affairs and International Cooperation Project (No. CN23GR02)+2 种基金the National Key Research and Development Program of China (Nos. 2019YFE03020003 and 2017YFE0301900)Users of Excellence program of Hefei Science Center CAS (No. 2021HSC-UE016)funded by the European Union via the Euratom Research and Training Programme (No. 101052200–EUROfusion)
文摘In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
文摘The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature variations on the Alfvén resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfvén resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi\|quadratic relation with the Alfvén field, which directly inspires the formation of cross\|spectrum between ULF waves and HF waves and results in spectral peaks at some gyro\|frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high\|speed flyer and the drifting electrons and the frequency shift from the phase variation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.
基金supported by the ITER Project of Ministry of Science and Technology(No.2022YFE03080002)National Natural Science Foundation of China(Nos.11605088 and 12005100)+5 种基金the Key Scientific Research Program of Education Department of Hunan Province(Nos.20A417 and 20A439)the National Magnetic Confinement Fusion Science Program of China(No.2015GB110002)the Hunan Provincial Natural Science Foundation of China(No.2017JJ3268)the International Cooperation Base Project of Hunan Province of China(No.2018WK4009)the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang(No.2018KJ108)the PhD Start-Up Fund of University of South China(No.2017XQD08)。
文摘In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.
基金the National Natural Science Foundation of China(41925018,41874194).
文摘We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be locally peaked at the magnetic equator.Perpendicular fluxes of ions(<100 eV)increase simultaneously with the appearances of EMIC waves,indicating a heating of these ions by EMIC waves.In addition,the measured ion distributions also support the equatorial peak formation,which accords with the result of the frequency analyses.The formation of local mass density peaks at the equator should be due to enhancements of equatorial ion concentrations,which are triggered by EMIC waves’perpendicular heating on low energy ions.
基金the National Natural Science Foundation of China (Grant Nos. 11775058 and 12175049)。
文摘The stability features of discrete Alfvén eigenmodes(αTAEs) trapped by α-induced potential wells are explored in the China Fusion Engineering Test Reactor(CFETR) advanced steady-state operation environment, where α denotes a measure of the pressure gradient. For the reversed magnetic shear(RS) H-mode scenario with an enhanced internal transport barrier(ITB), the αTAEs are trapped in the electron cyclotron(EC) power deposition region and the effects of different pedestals on αTAEs are analyzed. For the negative off-axis magnetic shear scenario, the αTAEs are discussed, and the effect of different magnetic shears on the α TAEs is presented. Finally, the effects of beam energies and pitch-angle distributions onαTAE stability are also presented.
文摘Application of sound waves is one of the novel techniques for the improvement of water treatment process. In this study, various sound waves such as 1) ultrasonic wave, 2) music box, and 3) windbell were irradiated to water and wastewater for removing contaminants such as nitrate, phosphorus and BOD/COD. As a result, a possibility of improvement of water and wastewater treatment process using sound waves with various frequencies was proposed.
基金supported by the Fundamental Research Fund for Chinese Central UniversitiesNational Natural Science Foundation of China under Grant No. 41474123the ITER-CN under Grant Nos. 2013GB104004 and 2013GB111004
文摘The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics(MHD). It is well known that a decrease in magnetic energy is proportional to the reconnection rate. It is found that an instantaneous increase in Alfvén wave energy in unit Alfvén time is the square dependence on the reconnection rate. The converted Alfvén wave energy is strongly enhanced due to the large increase in the reconnection rate in Hall MHD. For solar-terrestrial plasmas, the maximum converted Alfvén wave energy in unit Alfvén time with the Hall effect can be over 50 times higher than that without the Hall effect during magnetic reconnection.
基金supported by National Natural Science Foundation of China(Nos.11965019,42004131 and 61863032)。
文摘The inhomogeneity is introduced by a nonzero density gradient which separates the plasma into two different regions where plasma density are constant.The Alfvén waves,the phase mixing and the fast magnetosonic wave are excited by the boundary condition in inhomogeneous magnetized plasma.By using the Hall–magnetohydrodynamics(MHD)model,it is found that there are Alfvén waves in the homogeneous regions,while the phase mixing appears in the inhomogeneous region.The interesting result is that a fast magnetosonic wave is excited in a different direction which has a nonzero angle between the wave propagation direction and the direction of the background magnetic field.The dependence of the propagation direction of the excited fast magnetosonic wave and its strength of the magnetic field on the plasma parameters are given numerically.The results show that increasing both the driving frequency and the ratio of magnetic pressure to thermal pressure will increase the acceleration of the electrons.The electron acceleration also depends on the inhomogeneity parameters.
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No 40425015), the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore oil Corporation ("Behaviours of internal waves and their roles on the marine structures") and the National Natural Science Foundation of China (Grant No10461005).
文摘This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.
基金supported by the Shanghai Leading Academic Discipline Project (B206)the National Natural Science Foundation of China (11272210)
文摘Kinematic dynamo problem is studied with tsunami motion in open oceans. Using long wave approximation, a series solution of the dynamo problem is established with fast convergent rate based on a small parameter relating water wave dispersive effects. Taking solitary wave and single wave as typical tsunami wave models, the magnitude of tsunami induced magnetic field is estimated at the order of 10 nano Tesla (nT) just over sea level and 1 nT at altitudes of several hundreds kilometers, respectively, depending on the wave parameters as well as earth magnetic field. The space and time behavior of the magnetic field predicted by present model shows fairly similarity with the field data at Easter Island during 2010 Chile tsunami.