Background:Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed.It is believe...Background:Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed.It is believed that along with biodiesel from algae,the high protein de-oiled algal residue may become an alternative feed supplement option in the future.This study was conducted to investigate de-oiled algal residue obtained from the common Chlorella species,Thalassiosira weissflogii,Selenarstrum capricornutum,Scenedesmus sp.,and Scenedesmus dimorphus for assessment as potential feed supplements for ruminants by comparing with soybean(Glycine max) meal and alfalfa(Medicago sativa) hay.Results:With the exception of T.weissflogii,algal residue had higher concentrations of Cu,Zn,and Mn and lower concentration of Ca,Mg,and K than soybean meal and alfalfa hay.The algal residue CP(crude protein)concentrations ranged from 140 to 445 g/kg DM and varied among the de-oiled residues.In vitro rumen fermentation gas accumulation curves indicated that algal biomass degradation potential was less than that of soybean meal or alfalfa hay by up to 41.7%.The gas production curve,interpreted with a dual pool logistic model,confirmed that the fraction sizes for fast fermenting and slow fermenting of de-oiled algal residues were smaller than those in soybean meal and alfalfa hay,and the fermenting rate of the fractions was also low.Conclusions:Inferior in vitro rumen gas accumulation from the five de-oiled algal residues suggests that these algal byproducts are less degradable in the rumen.展开更多
Tilapia culture is one of the largest sectors of global aquaculture.Among the different species of tilapia,Nile tilapia(Oreochromis niloticus)is perhaps the top cultured species.The production of Nile tilapia has been...Tilapia culture is one of the largest sectors of global aquaculture.Among the different species of tilapia,Nile tilapia(Oreochromis niloticus)is perhaps the top cultured species.The production of Nile tilapia has been continually increasing throughout the years resulting in genetic deterioration.Several tilapia strains with better growth performance and adaptive capability to survive in different culture conditions have been developed to alleviate the crisis.Increased demand for Nile tilapia implies higher farming cost.Plant-based proteins are utilized as partial or complete fishmeal replacements to reduce feed cost.However,these proteins can adversely affect and alter growth and feed performance,carcass composition and indices,and gut and hepatic health.This review discusses the use of seven plant-based proteins:namely,soybean,copra,pea,corn,palm kernel,microalgae,and seaweed as a Nile tilapia aquafeed.Different processing methods are employed to produce several types of plant-based proteins.Processed plant-protein types,when utilized as an aquafeed ingredient,vary in its effect on the performance,hemato-immunological parameters,and gut and hepatic health of Nile tilapia.Studies have shown that Nile tilapia can effectively maximize plant-based protein diets based on the preparation method,type of plant source,amino acid supplementation,and inclusion levels of the plant proteins.These readily available crops should be considered as primary protein sources for aquaculture.Hindrances to the use of plant-based proteins as a main dietary protein are limiting amino acids,presence of anti-nutritional factors,and the competition between its demand as human food and as animal feed.展开更多
为探究共沉淀蛋白乳液稳定二十二碳六烯酸(docosahexenoic acid,DHA)藻油的可行性,该研究以罗非鱼分离蛋白(tilapia protein isolate,TPI)、3种罗非鱼-大豆共沉淀蛋白(tilapia-soy protein co-precipitates,TSPC_(2∶1)、TSPC_(1∶1)和T...为探究共沉淀蛋白乳液稳定二十二碳六烯酸(docosahexenoic acid,DHA)藻油的可行性,该研究以罗非鱼分离蛋白(tilapia protein isolate,TPI)、3种罗非鱼-大豆共沉淀蛋白(tilapia-soy protein co-precipitates,TSPC_(2∶1)、TSPC_(1∶1)和TSPC_(1∶2))和大豆分离蛋白(soy protein isolate,SPI)为乳化剂,高压均质制备TPI、TSPC和SPI-DHA藻油乳液,比较5种乳液的物理稳定性和氧化稳定性。结果表明,与TPI乳液比较,随着原料中大豆比例的增加,TSPC-DHA藻油乳液的平均粒径和乳析指数减小(P<0.05),Zeta电位绝对值增大(P<0.05),乳液的物理稳定性增强。与SPI乳液比较,贮藏过程中TSPC-DHA藻油乳液的过氧化值和硫代巴比妥酸反应物值明显较小(P<0.05),乳液的氧化稳定性明显改善。TSPC_(1∶1)和TSPC_(1∶2)乳液在4℃贮藏28 d无明显分层,氧化产物含量接近TPI乳液,乳液稳定性较好。初步分析,共沉淀蛋白中的大豆蛋白组分能更好地覆盖油水界面,提高了乳液贮藏的物理稳定性,而鱼蛋白组分能够减缓油脂的氧化速率,提高了乳液贮藏的氧化稳定性。TSPC乳液具有优于TPI乳液的物理稳定性和优于SPI乳液的氧化稳定性,可用作良好的乳化剂稳定DHA藻油。该研究结果可为共沉淀蛋白功能乳液的开发提供参考。展开更多
利用蜂蜡结构化藻油结合大豆分离蛋白-甜菊糖(soy protein isolate-stevioside,SPI-STE)复合体系的乳化特性,制备高稳态的藻油纳米乳液体系。藻油凝胶的微观结构观察、热性质测试以及流变学分析表明,当藻油中蜂蜡添加量达到4%(m/m)时,...利用蜂蜡结构化藻油结合大豆分离蛋白-甜菊糖(soy protein isolate-stevioside,SPI-STE)复合体系的乳化特性,制备高稳态的藻油纳米乳液体系。藻油凝胶的微观结构观察、热性质测试以及流变学分析表明,当藻油中蜂蜡添加量达到4%(m/m)时,大量晶体组装成稳固的网络结构,从而构筑出稳定的油凝胶。进一步以SPI-STE为稳定剂制备藻油纳米乳液,研究了藻油结构化对纳米乳液形成及稳定性的影响。结果表明,油相中添加蜂蜡对纳米乳液的形成没有显著影响。随着藻油中蜂蜡质量分数的增大(0%~6%),乳液的物理稳定性逐渐提高;但在高蜂蜡添加量(8%)下,刚性较强的凝胶网络破坏了油滴界面层,乳液稳定性变差。热促氧化及光促氧化结果显示,蜂蜡油相结构化明显提高了纳米乳液的氧化稳定性,其中油相中含有6%蜂蜡的样品延缓氧化的效果最明显。本研究可为食品工业构建高稳态的藻油纳米乳液载体及产品提供一定技术支持。展开更多
Microcystins produced by cyanobacteria pose a great threat to human health by releasing toxins upon cell death. In the present study, we studied microcystin production in the cyanobacterial strains Anabaena cylindrica...Microcystins produced by cyanobacteria pose a great threat to human health by releasing toxins upon cell death. In the present study, we studied microcystin production in the cyanobacterial strains Anabaena cylindrica (B629 and 2949) and Fremyella diplosiphon (SF33) exposed to 1, 2 and 4 g/L sodium chloride (NaCl). Cultures grown for 7 days in BG11/HEPES medium were pelleted, re-grown in the corresponding NaCl levels, and enzyme linked immunosorbent assay (ELISA) performed. ELISA assays revealed enhanced microcystin production in A. cylindrica B629 exposed to 4 g/L NaCl and A. cylindrica 29414 exposed to 2 and 4 g/L NaCl, after growth in the corresponding NaCl levels for 14 days. We observed a significant decrease (p > 0.05) in microcystin levels in the control strains after exposure to NaCl for 5 days. After exposure to 1, 2, or 4 g/L NaCl for 10 days, no microcystin release was observed in A. cylindrica B629, A. cylindrica 29414 or F. diplosiphon SF33. Sodium dodecyl sulfate polyacrylamide gel electrophoresis identified the presence of an additional band at 120 - 130 kDa in A. cylindrica B629 exposed to 2 and 4 g/L NaCl, and at 14 kDa in cultures amended with 1 and 2 g/L NaCl as well as the untreated control, indicating that exposure to salinity induces alterations in protein expression.展开更多
Based on the transcriptomic sequencing, three genes of Alexandrium pacificum encoding ubiquitin(UBI), telomerase(TEL) and glycine-rich protein(GRP) relating to cell division were isolated and characterized. The full-l...Based on the transcriptomic sequencing, three genes of Alexandrium pacificum encoding ubiquitin(UBI), telomerase(TEL) and glycine-rich protein(GRP) relating to cell division were isolated and characterized. The full-length cD NA of GRP was obtained through approach of rapid amplification of c DNA ends(RACE). Four conserved domains, including DNA-and RNAbinding sites or motifs, cold shock domain at the N-terminal, and zinc-finger structure of CCCH type at the C-terminal were idenrtified. Phylogenetic analysis revealed that the deduced amino acid sequence of GRP tends to cluster together with proteins harboring cold shock domain. The expressions of these three genes were analyzed with quantitative PCR(qPCR). It was found that the expressions of these three genes at the logarithmic growth phase and induced logarithmic growth phase were all higher than those at lagging growth phase(P < 0.05). The expression patterns of these three genes were coincident with the proliferative capacity of the algae, e.g., displaying increased expression level at log and induced growth phases. The functions of these genes and their possible roles during harmful algal blooms(HAB) were discussed.展开更多
Objective To explore the potential reporter gene assay for the detection of sodium channel-specific toxins in shellfish as an alternative for screening harmful algal bloom (HAB) toxins, considering the fact that the e...Objective To explore the potential reporter gene assay for the detection of sodium channel-specific toxins in shellfish as an alternative for screening harmful algal bloom (HAB) toxins, considering the fact that the existing methods including HPLC and bioassay are inappropriate for identifying HAB toxins which poses a serious problem on human health and shellfish industry. Methods A reporter plasmid pEGFP-c-fos containing c-fos promoter and EGFP was constructed and transfected into T24 cells using LipofectAMINE 2000. Positive transfcctants were screened by G418 to produce a pEGFP-c-fos-T24 cell line. After addition of increasing neurotoxic shellfish poison (NSP) or GTX2,3, primary components of paralytic shellfish poison (PSP), changes in expression of EGFP in the cell line were observed under a laser scanning confocal microscope and quantified with Image-pro Plus software. Results Dose-dependent changes in the intensity of green fluorescence were observed for NSP in a range from 0 to 10 ng/mL and for GTX2,3 from 0 to 16 ng/mL. Conclusion pEGFP-c-fos-T24 can be applied in detecting HAB toxins, and cell-based assay can be used as an alternative for screening sodium channel-specific HAB toxins.展开更多
基金supported by Louisiana Board of Regents Research grant
文摘Background:Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed.It is believed that along with biodiesel from algae,the high protein de-oiled algal residue may become an alternative feed supplement option in the future.This study was conducted to investigate de-oiled algal residue obtained from the common Chlorella species,Thalassiosira weissflogii,Selenarstrum capricornutum,Scenedesmus sp.,and Scenedesmus dimorphus for assessment as potential feed supplements for ruminants by comparing with soybean(Glycine max) meal and alfalfa(Medicago sativa) hay.Results:With the exception of T.weissflogii,algal residue had higher concentrations of Cu,Zn,and Mn and lower concentration of Ca,Mg,and K than soybean meal and alfalfa hay.The algal residue CP(crude protein)concentrations ranged from 140 to 445 g/kg DM and varied among the de-oiled residues.In vitro rumen fermentation gas accumulation curves indicated that algal biomass degradation potential was less than that of soybean meal or alfalfa hay by up to 41.7%.The gas production curve,interpreted with a dual pool logistic model,confirmed that the fraction sizes for fast fermenting and slow fermenting of de-oiled algal residues were smaller than those in soybean meal and alfalfa hay,and the fermenting rate of the fractions was also low.Conclusions:Inferior in vitro rumen gas accumulation from the five de-oiled algal residues suggests that these algal byproducts are less degradable in the rumen.
文摘Tilapia culture is one of the largest sectors of global aquaculture.Among the different species of tilapia,Nile tilapia(Oreochromis niloticus)is perhaps the top cultured species.The production of Nile tilapia has been continually increasing throughout the years resulting in genetic deterioration.Several tilapia strains with better growth performance and adaptive capability to survive in different culture conditions have been developed to alleviate the crisis.Increased demand for Nile tilapia implies higher farming cost.Plant-based proteins are utilized as partial or complete fishmeal replacements to reduce feed cost.However,these proteins can adversely affect and alter growth and feed performance,carcass composition and indices,and gut and hepatic health.This review discusses the use of seven plant-based proteins:namely,soybean,copra,pea,corn,palm kernel,microalgae,and seaweed as a Nile tilapia aquafeed.Different processing methods are employed to produce several types of plant-based proteins.Processed plant-protein types,when utilized as an aquafeed ingredient,vary in its effect on the performance,hemato-immunological parameters,and gut and hepatic health of Nile tilapia.Studies have shown that Nile tilapia can effectively maximize plant-based protein diets based on the preparation method,type of plant source,amino acid supplementation,and inclusion levels of the plant proteins.These readily available crops should be considered as primary protein sources for aquaculture.Hindrances to the use of plant-based proteins as a main dietary protein are limiting amino acids,presence of anti-nutritional factors,and the competition between its demand as human food and as animal feed.
文摘为探究共沉淀蛋白乳液稳定二十二碳六烯酸(docosahexenoic acid,DHA)藻油的可行性,该研究以罗非鱼分离蛋白(tilapia protein isolate,TPI)、3种罗非鱼-大豆共沉淀蛋白(tilapia-soy protein co-precipitates,TSPC_(2∶1)、TSPC_(1∶1)和TSPC_(1∶2))和大豆分离蛋白(soy protein isolate,SPI)为乳化剂,高压均质制备TPI、TSPC和SPI-DHA藻油乳液,比较5种乳液的物理稳定性和氧化稳定性。结果表明,与TPI乳液比较,随着原料中大豆比例的增加,TSPC-DHA藻油乳液的平均粒径和乳析指数减小(P<0.05),Zeta电位绝对值增大(P<0.05),乳液的物理稳定性增强。与SPI乳液比较,贮藏过程中TSPC-DHA藻油乳液的过氧化值和硫代巴比妥酸反应物值明显较小(P<0.05),乳液的氧化稳定性明显改善。TSPC_(1∶1)和TSPC_(1∶2)乳液在4℃贮藏28 d无明显分层,氧化产物含量接近TPI乳液,乳液稳定性较好。初步分析,共沉淀蛋白中的大豆蛋白组分能更好地覆盖油水界面,提高了乳液贮藏的物理稳定性,而鱼蛋白组分能够减缓油脂的氧化速率,提高了乳液贮藏的氧化稳定性。TSPC乳液具有优于TPI乳液的物理稳定性和优于SPI乳液的氧化稳定性,可用作良好的乳化剂稳定DHA藻油。该研究结果可为共沉淀蛋白功能乳液的开发提供参考。
文摘利用蜂蜡结构化藻油结合大豆分离蛋白-甜菊糖(soy protein isolate-stevioside,SPI-STE)复合体系的乳化特性,制备高稳态的藻油纳米乳液体系。藻油凝胶的微观结构观察、热性质测试以及流变学分析表明,当藻油中蜂蜡添加量达到4%(m/m)时,大量晶体组装成稳固的网络结构,从而构筑出稳定的油凝胶。进一步以SPI-STE为稳定剂制备藻油纳米乳液,研究了藻油结构化对纳米乳液形成及稳定性的影响。结果表明,油相中添加蜂蜡对纳米乳液的形成没有显著影响。随着藻油中蜂蜡质量分数的增大(0%~6%),乳液的物理稳定性逐渐提高;但在高蜂蜡添加量(8%)下,刚性较强的凝胶网络破坏了油滴界面层,乳液稳定性变差。热促氧化及光促氧化结果显示,蜂蜡油相结构化明显提高了纳米乳液的氧化稳定性,其中油相中含有6%蜂蜡的样品延缓氧化的效果最明显。本研究可为食品工业构建高稳态的藻油纳米乳液载体及产品提供一定技术支持。
文摘Microcystins produced by cyanobacteria pose a great threat to human health by releasing toxins upon cell death. In the present study, we studied microcystin production in the cyanobacterial strains Anabaena cylindrica (B629 and 2949) and Fremyella diplosiphon (SF33) exposed to 1, 2 and 4 g/L sodium chloride (NaCl). Cultures grown for 7 days in BG11/HEPES medium were pelleted, re-grown in the corresponding NaCl levels, and enzyme linked immunosorbent assay (ELISA) performed. ELISA assays revealed enhanced microcystin production in A. cylindrica B629 exposed to 4 g/L NaCl and A. cylindrica 29414 exposed to 2 and 4 g/L NaCl, after growth in the corresponding NaCl levels for 14 days. We observed a significant decrease (p > 0.05) in microcystin levels in the control strains after exposure to NaCl for 5 days. After exposure to 1, 2, or 4 g/L NaCl for 10 days, no microcystin release was observed in A. cylindrica B629, A. cylindrica 29414 or F. diplosiphon SF33. Sodium dodecyl sulfate polyacrylamide gel electrophoresis identified the presence of an additional band at 120 - 130 kDa in A. cylindrica B629 exposed to 2 and 4 g/L NaCl, and at 14 kDa in cultures amended with 1 and 2 g/L NaCl as well as the untreated control, indicating that exposure to salinity induces alterations in protein expression.
基金supported by the National Natural Science Foundation of China (Nos. 41676091 41176098)Shandong Province Natural Science Foundation (No. ZR 2011DZ002)
文摘Based on the transcriptomic sequencing, three genes of Alexandrium pacificum encoding ubiquitin(UBI), telomerase(TEL) and glycine-rich protein(GRP) relating to cell division were isolated and characterized. The full-length cD NA of GRP was obtained through approach of rapid amplification of c DNA ends(RACE). Four conserved domains, including DNA-and RNAbinding sites or motifs, cold shock domain at the N-terminal, and zinc-finger structure of CCCH type at the C-terminal were idenrtified. Phylogenetic analysis revealed that the deduced amino acid sequence of GRP tends to cluster together with proteins harboring cold shock domain. The expressions of these three genes were analyzed with quantitative PCR(qPCR). It was found that the expressions of these three genes at the logarithmic growth phase and induced logarithmic growth phase were all higher than those at lagging growth phase(P < 0.05). The expression patterns of these three genes were coincident with the proliferative capacity of the algae, e.g., displaying increased expression level at log and induced growth phases. The functions of these genes and their possible roles during harmful algal blooms(HAB) were discussed.
基金supported by the National Natural Science Foundation of China (U0733006, 40976065)973 Plan of China (2010CB428702)
文摘Objective To explore the potential reporter gene assay for the detection of sodium channel-specific toxins in shellfish as an alternative for screening harmful algal bloom (HAB) toxins, considering the fact that the existing methods including HPLC and bioassay are inappropriate for identifying HAB toxins which poses a serious problem on human health and shellfish industry. Methods A reporter plasmid pEGFP-c-fos containing c-fos promoter and EGFP was constructed and transfected into T24 cells using LipofectAMINE 2000. Positive transfcctants were screened by G418 to produce a pEGFP-c-fos-T24 cell line. After addition of increasing neurotoxic shellfish poison (NSP) or GTX2,3, primary components of paralytic shellfish poison (PSP), changes in expression of EGFP in the cell line were observed under a laser scanning confocal microscope and quantified with Image-pro Plus software. Results Dose-dependent changes in the intensity of green fluorescence were observed for NSP in a range from 0 to 10 ng/mL and for GTX2,3 from 0 to 16 ng/mL. Conclusion pEGFP-c-fos-T24 can be applied in detecting HAB toxins, and cell-based assay can be used as an alternative for screening sodium channel-specific HAB toxins.