In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates th...In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.展开更多
In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the ...In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.展开更多
In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better...In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.展开更多
Some relationships between the representation of Hom-Jacobi-Jordan algebra and that of Jacobi-Jordan algebra are studied.Moreover,by using the notion ofαk-anti-derivation,a property theorem of multiplicative Hom-Jaco...Some relationships between the representation of Hom-Jacobi-Jordan algebra and that of Jacobi-Jordan algebra are studied.Moreover,by using the notion ofαk-anti-derivation,a property theorem of multiplicative Hom-Jacobi-Jordan algebras is also given.展开更多
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m...Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).展开更多
The BCK/BCI/BCH-algebras finds general algebra system than Boolean algebras system. This paper presents a novel class of algebras of type (2, 0) called BCL-algebras. We found the BCL-algebras to be more extensive clas...The BCK/BCI/BCH-algebras finds general algebra system than Boolean algebras system. This paper presents a novel class of algebras of type (2, 0) called BCL-algebras. We found the BCL-algebras to be more extensive class than BCK/BCI/BCH-algebras in the abstract algebra. The BCL-algebras as a class of logical algebras are the algebraic formulations of the set difference together with its properties in set theory and the propositional calculus in logical systems. It is important that the BCL-algebras play an independent role in the axiom algebra system.展开更多
In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary ...In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary integer larger than or equal to 3. They share most optimal properties as those of the Bézier basis and B-Spline basis respectively and can represent exactly some remarkable curves and surfaces such as the hyperbola, catenary, hyperbolic spiral and the hyperbolic paraboloid. The generation of tensor product surfaces of the AH B-Spline basis have two forms: AH B-Spline surface and AH T-Spline surface.展开更多
The purpose of this paper is to give a brief introduction to the category of Lie Rinehart algebras and introduces the concept of smooth manifolds associated with a unitary, commutative, associative algebra A. It espec...The purpose of this paper is to give a brief introduction to the category of Lie Rinehart algebras and introduces the concept of smooth manifolds associated with a unitary, commutative, associative algebra A. It especially shows that the A-extended algebra as well as the action algebra can be realized as the space of A-left invariant vector fields on a Lie group, analogous to the well known relationship of Lie algebras and Lie groups.展开更多
In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and...In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].展开更多
Using the theory of derivations on finitely generated and graded Lie algebras, we determine that derivations of the BMS-Weyl algebra are all inner. On this basis, it is proved that every 2-local derivation of the BMS-...Using the theory of derivations on finitely generated and graded Lie algebras, we determine that derivations of the BMS-Weyl algebra are all inner. On this basis, it is proved that every 2-local derivation of the BMS-Weyl algebra is a derivation.展开更多
In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obta...In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.展开更多
The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers ...The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.展开更多
The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modu...The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modules.展开更多
Let F be a field and char F = p > 3. In this paper the derivation algebras of Lie superalgebras W and S of Cartan-type over F are determined by the calculating method.
In this article, we have given the definition of the relative double multiplier (quasi-multiplier) on a ternary algebra,and studied the isomorphic problem of the multiplier algebra M(A,e) of a ternary algerbra A.
In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to inv...In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).展开更多
In this paper, we mainly study some properties of elementary n-Lie algebras, and prove some necessary and sufficient conditions for elementary n-Lie algebras. We also give the relations between elementary n-algebras a...In this paper, we mainly study some properties of elementary n-Lie algebras, and prove some necessary and sufficient conditions for elementary n-Lie algebras. We also give the relations between elementary n-algebras and E-algebras.展开更多
The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the ...The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the sense of weak Hopf π-coalgebras.Let H be a finite type weak Hopf π-coalgebra,and A a weak right π-H-comodule algebra.It is constructed that a Morita context connects A#H* which is a weak smash product and the ring of coinvariants AcoH.This result is the generalization of that of Wang's in the paper "Morita contexts,π-Galois extensions for Hopf π-coalgebras" in 2006.Furthermore,the result is important for constructing weak π-Galois extensions.展开更多
Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (...Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (M, N) H and HOMA(M, N) are isomorphic as right Hopf π-H-comodules, where Hom A H(M, N) denotes the space of right A-module fight H-comodule morphisms and HOMa (M, N) denotes the rational space of a space Hom A(M, N) of right A-module morphisms. Secondly, the structure theorem of endomorphism algebras of two-sided relative (A, H)-Hopf π--comodules is established; that is, End A H (M)#H and END A(M, N) are isomorphic as fight Hopf π-H-comodules and algebras.展开更多
文摘In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.
文摘In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.
基金partially supported by the Natural Sciences and Engineering Research Council of Canada(2019-03907)。
文摘In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.
基金National Natural Science Foundation of China(12071405,11571145)。
文摘Some relationships between the representation of Hom-Jacobi-Jordan algebra and that of Jacobi-Jordan algebra are studied.Moreover,by using the notion ofαk-anti-derivation,a property theorem of multiplicative Hom-Jacobi-Jordan algebras is also given.
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .
文摘Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).
文摘The BCK/BCI/BCH-algebras finds general algebra system than Boolean algebras system. This paper presents a novel class of algebras of type (2, 0) called BCL-algebras. We found the BCL-algebras to be more extensive class than BCK/BCI/BCH-algebras in the abstract algebra. The BCL-algebras as a class of logical algebras are the algebraic formulations of the set difference together with its properties in set theory and the propositional calculus in logical systems. It is important that the BCL-algebras play an independent role in the axiom algebra system.
基金Projects supported by the National Natural Science Foundation of China (No. 10371110) and the National Basic Research Program (973) of China (No.G2002CB312101)
文摘In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary integer larger than or equal to 3. They share most optimal properties as those of the Bézier basis and B-Spline basis respectively and can represent exactly some remarkable curves and surfaces such as the hyperbola, catenary, hyperbolic spiral and the hyperbolic paraboloid. The generation of tensor product surfaces of the AH B-Spline basis have two forms: AH B-Spline surface and AH T-Spline surface.
基金the China Postdoctoral Science Foundation(20060400017)
文摘The purpose of this paper is to give a brief introduction to the category of Lie Rinehart algebras and introduces the concept of smooth manifolds associated with a unitary, commutative, associative algebra A. It especially shows that the A-extended algebra as well as the action algebra can be realized as the space of A-left invariant vector fields on a Lie group, analogous to the well known relationship of Lie algebras and Lie groups.
基金Supported by National Natural Science Foundation of China(11801094).
文摘In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].
基金National Natural Science Foundation of China(11971315)。
文摘Using the theory of derivations on finitely generated and graded Lie algebras, we determine that derivations of the BMS-Weyl algebra are all inner. On this basis, it is proved that every 2-local derivation of the BMS-Weyl algebra is a derivation.
基金supported by the National Natural Science Foundation of China (Nos.12171290,12301152)the Natural Science Foundation of Shanxi Province (No.202203021222018)。
文摘In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.
文摘The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.
文摘The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modules.
文摘Let F be a field and char F = p > 3. In this paper the derivation algebras of Lie superalgebras W and S of Cartan-type over F are determined by the calculating method.
文摘In this article, we have given the definition of the relative double multiplier (quasi-multiplier) on a ternary algebra,and studied the isomorphic problem of the multiplier algebra M(A,e) of a ternary algerbra A.
基金supported by the Daejin University grants in 2010
文摘In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).
基金The NSF(A2007000138,2005000088)of Hebei Provincethe NSF(y2004034)of Hebei University
文摘In this paper, we mainly study some properties of elementary n-Lie algebras, and prove some necessary and sufficient conditions for elementary n-Lie algebras. We also give the relations between elementary n-algebras and E-algebras.
基金The Scientific Research Innovation Project for College Graduates in Jiangsu Province(No.CXLX_0094)
文摘The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the sense of weak Hopf π-coalgebras.Let H be a finite type weak Hopf π-coalgebra,and A a weak right π-H-comodule algebra.It is constructed that a Morita context connects A#H* which is a weak smash product and the ring of coinvariants AcoH.This result is the generalization of that of Wang's in the paper "Morita contexts,π-Galois extensions for Hopf π-coalgebras" in 2006.Furthermore,the result is important for constructing weak π-Galois extensions.
基金The Research and Innovation Project for College Graduates of Jiangsu Province(No.CXLX_0094)the Natural Science Foundation of Chuzhou University(No.2010kj006Z)
文摘Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (M, N) H and HOMA(M, N) are isomorphic as right Hopf π-H-comodules, where Hom A H(M, N) denotes the space of right A-module fight H-comodule morphisms and HOMa (M, N) denotes the rational space of a space Hom A(M, N) of right A-module morphisms. Secondly, the structure theorem of endomorphism algebras of two-sided relative (A, H)-Hopf π--comodules is established; that is, End A H (M)#H and END A(M, N) are isomorphic as fight Hopf π-H-comodules and algebras.