A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can ...A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.展开更多
Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we ...Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we study the question of when co-commuting mappings on G are proper.展开更多
Let B(R^n) be the set of all n x n real matrices, Sr the set of all matrices with rank r, 0 ≤ r ≤ n, and Sr^# the number of arcwise connected components of Sr. It is well-known that Sn =GL(R^n) is a Lie group an...Let B(R^n) be the set of all n x n real matrices, Sr the set of all matrices with rank r, 0 ≤ r ≤ n, and Sr^# the number of arcwise connected components of Sr. It is well-known that Sn =GL(R^n) is a Lie group and also a smooth hypersurface in B(R^n) with the dimension n × n.展开更多
In this paper, it is proved that under certain conditions, each Jordan left derivation on a generalized matrix algebra is zero and each generalized Jordan left derivation is a generalized left derivation.
Let A be a Frobenius k-algebra. The matrix algebra R =(■) is called a generalized matrix algebra over a Frobenius algebra A. In this paper we show that R is also a Frobenius algebra.
Let Tn+1 (R) be upper matrix algebra of order n + 1 over a 2-torsion free commutative ring R with identity. In this paper, we find an automorphism, which is fixed by all orthogonal idempotents and is not an R-alge...Let Tn+1 (R) be upper matrix algebra of order n + 1 over a 2-torsion free commutative ring R with identity. In this paper, we find an automorphism, which is fixed by all orthogonal idempotents and is not an R-algebra aulomorphism, of Tn+1 (R). Furthermore we prove that this aulomorphism is an involutive Jordan automorphism of Tn+1 (R).展开更多
A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of t...A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of the above system is presented.Finally,the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.展开更多
A set of new multi-component matrix Lie algebra is constructed, which is devoted to obtaining a new loop algebra A^-2M. It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville in...A set of new multi-component matrix Lie algebra is constructed, which is devoted to obtaining a new loop algebra A^-2M. It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville integrable multi-component hicrarchy of soliton equations is generated, which possesses the multi.component Hamiltonian structures. As its reduction cases, the multi-component C-KdV hierarchy is given. Finally, the multi.component integrable coupling system of C-KdV hierarchy is presented through enlarging matrix spectral problem.展开更多
Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomp...Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomposed into a product of involutive, inner and diagonal automorphisms.展开更多
In this paper, we introduce the concept of AK-property for the perfect ma-trix algebras ∑(λ) and give some characterizations of∑(λ)possessing AK-property.
Let λ and μ be sequence spaces and have both the signed weak gliding hump property, (λ,μ) the algebra of the infinite matrix operators which transform λ into μ . In this paper, it is proved ...Let λ and μ be sequence spaces and have both the signed weak gliding hump property, (λ,μ) the algebra of the infinite matrix operators which transform λ into μ . In this paper, it is proved that if λ and μ are β spaces and λ β and μ β have also the signed weak gliding hump property, then for any polar topology τ, ((λ,μ),τ) is always sequentially complete locally convex topological algebra.展开更多
The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturb...The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.展开更多
When the parameters of structures are uncertain, the structural natural frequencies become uncertain. The interval parameters description, i.e. the unknown-but bounded parameters description is one of the methods to s...When the parameters of structures are uncertain, the structural natural frequencies become uncertain. The interval parameters description, i.e. the unknown-but bounded parameters description is one of the methods to study the uncertainty. In this paper, the vibration problem of structure with interval parameters was studied, and the eigenvalue problem of the structures with interval parameters was transferred into two different eigenvalue problems. The perturbation method was applied to the vibration problem of the structures with interval parameters. The numerical results show that the proposed method is sufficiently accurate and needs less computational efforts.展开更多
Using the defining matrices of A1 in classical algebras An, Bn, Cn and Dn, deduce the embedding indices of the physical A1 algebra in classical algebras, The Ginocchio so(8) model is as an example.
The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of gr...The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.展开更多
Let J. be an n × n Jacobi matrix and Al λ1 ,..',λ2n distinct real numbers. The following problem is well known. Under what condition does there exist a 2n × 2n Jacobi matrix J. such that J,. has eige...Let J. be an n × n Jacobi matrix and Al λ1 ,..',λ2n distinct real numbers. The following problem is well known. Under what condition does there exist a 2n × 2n Jacobi matrix J. such that J,. has eigenvalues λ1, ..λ2n A. and its leading n × n principal submatrix is exactly Jn In this paper a condition for the solubility of the problem is given. The dependence of J2n on the given data is shown to be continuous.展开更多
In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and suf...In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and sufficient condition for the existence of positive definite solutions of the Riccati- Ito equations is obtained and an iterative solution to the Riccati- Ito equations is also given in the paper thus a complete solution to the basic problem of optimal control of time-invariant linear Ito stochastic systems is then obtained. An example is given at the end of the paper to illustrate the application of the result of the paper.展开更多
A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed. Then an algorithm of 3D object recognition using the linear Lie algebra models is presented. It is a ...A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed. Then an algorithm of 3D object recognition using the linear Lie algebra models is presented. It is a convenient recognition method for the objects which are symmetric about some axis. By using the presented algorithm, the representation matrices of the fibre or the base curve from only finite points of the linear Lie algebra model can be obtained. At last some recognition results of practicalities are given.展开更多
We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1]. It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra ass...We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1]. It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra associated with the U(N) Lie algebra. There is no ghost related to the Lorentzian signature in this model. It is invariant under 64 supersymmetry transformations although the supersymmetry algebra does not close. From the model, we derive the BFSS matrix theory and the IIB matrix model in a large N limit by taking appropriate vacua.展开更多
We review on Zariski 3-algebra model of M-theory. The model is obtained by Zariski quantization of a semi-light-cone supermembrane action. The model has manifest N=1 supersymmetry in eleven dimensions and its relation...We review on Zariski 3-algebra model of M-theory. The model is obtained by Zariski quantization of a semi-light-cone supermembrane action. The model has manifest N=1 supersymmetry in eleven dimensions and its relation to the supermembrane action is clear.展开更多
基金This project is supported by National Natural Science Foundation of China (No.59805001)
文摘A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.
文摘Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we study the question of when co-commuting mappings on G are proper.
文摘Let B(R^n) be the set of all n x n real matrices, Sr the set of all matrices with rank r, 0 ≤ r ≤ n, and Sr^# the number of arcwise connected components of Sr. It is well-known that Sn =GL(R^n) is a Lie group and also a smooth hypersurface in B(R^n) with the dimension n × n.
基金Fundamental Research Funds (N110423007) for the Central Universities
文摘In this paper, it is proved that under certain conditions, each Jordan left derivation on a generalized matrix algebra is zero and each generalized Jordan left derivation is a generalized left derivation.
基金The NSF(KJ2016A545,1808085MA14,KJ2018A0839) of Anhui Province
文摘Let A be a Frobenius k-algebra. The matrix algebra R =(■) is called a generalized matrix algebra over a Frobenius algebra A. In this paper we show that R is also a Frobenius algebra.
文摘Let Tn+1 (R) be upper matrix algebra of order n + 1 over a 2-torsion free commutative ring R with identity. In this paper, we find an automorphism, which is fixed by all orthogonal idempotents and is not an R-algebra aulomorphism, of Tn+1 (R). Furthermore we prove that this aulomorphism is an involutive Jordan automorphism of Tn+1 (R).
基金supported by Science Foundation of the Educational Department of Shandong Province of China
文摘A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of the above system is presented.Finally,the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.
基金The project supported by the State Key Basic Research Development Program of China under Grant No. 1998030600 and the National Natural Science Foundation of China under Grant No. 10072013
文摘A set of new multi-component matrix Lie algebra is constructed, which is devoted to obtaining a new loop algebra A^-2M. It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville integrable multi-component hicrarchy of soliton equations is generated, which possesses the multi.component Hamiltonian structures. As its reduction cases, the multi-component C-KdV hierarchy is given. Finally, the multi.component integrable coupling system of C-KdV hierarchy is presented through enlarging matrix spectral problem.
文摘Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomposed into a product of involutive, inner and diagonal automorphisms.
文摘In this paper, we introduce the concept of AK-property for the perfect ma-trix algebras ∑(λ) and give some characterizations of∑(λ)possessing AK-property.
基金This research is partly supported by the NSF of Hei Longjiang
文摘Let λ and μ be sequence spaces and have both the signed weak gliding hump property, (λ,μ) the algebra of the infinite matrix operators which transform λ into μ . In this paper, it is proved that if λ and μ are β spaces and λ β and μ β have also the signed weak gliding hump property, then for any polar topology τ, ((λ,μ),τ) is always sequentially complete locally convex topological algebra.
文摘The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.
文摘When the parameters of structures are uncertain, the structural natural frequencies become uncertain. The interval parameters description, i.e. the unknown-but bounded parameters description is one of the methods to study the uncertainty. In this paper, the vibration problem of structure with interval parameters was studied, and the eigenvalue problem of the structures with interval parameters was transferred into two different eigenvalue problems. The perturbation method was applied to the vibration problem of the structures with interval parameters. The numerical results show that the proposed method is sufficiently accurate and needs less computational efforts.
文摘Using the defining matrices of A1 in classical algebras An, Bn, Cn and Dn, deduce the embedding indices of the physical A1 algebra in classical algebras, The Ginocchio so(8) model is as an example.
文摘The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.
文摘Let J. be an n × n Jacobi matrix and Al λ1 ,..',λ2n distinct real numbers. The following problem is well known. Under what condition does there exist a 2n × 2n Jacobi matrix J. such that J,. has eigenvalues λ1, ..λ2n A. and its leading n × n principal submatrix is exactly Jn In this paper a condition for the solubility of the problem is given. The dependence of J2n on the given data is shown to be continuous.
文摘In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and sufficient condition for the existence of positive definite solutions of the Riccati- Ito equations is obtained and an iterative solution to the Riccati- Ito equations is also given in the paper thus a complete solution to the basic problem of optimal control of time-invariant linear Ito stochastic systems is then obtained. An example is given at the end of the paper to illustrate the application of the result of the paper.
基金Sponsored by the Ministry of Education Foundation of China(5220308)
文摘A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed. Then an algorithm of 3D object recognition using the linear Lie algebra models is presented. It is a convenient recognition method for the objects which are symmetric about some axis. By using the presented algorithm, the representation matrices of the fibre or the base curve from only finite points of the linear Lie algebra model can be obtained. At last some recognition results of practicalities are given.
文摘We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1]. It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra associated with the U(N) Lie algebra. There is no ghost related to the Lorentzian signature in this model. It is invariant under 64 supersymmetry transformations although the supersymmetry algebra does not close. From the model, we derive the BFSS matrix theory and the IIB matrix model in a large N limit by taking appropriate vacua.
文摘We review on Zariski 3-algebra model of M-theory. The model is obtained by Zariski quantization of a semi-light-cone supermembrane action. The model has manifest N=1 supersymmetry in eleven dimensions and its relation to the supermembrane action is clear.