Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, ac...Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, accessible from anywhere, etc. However, there is still room for improvement. Computer algebra system (CAS) optimization is the set of best practices and techniques to keep the CAS running optimally. Best practices are related to how to carry out a mathematical task or configure your system. In this paper, we are going to examine these techniques. The documentation sheets of CASs are the source of data that we used to compare them and examine their characteristics. The research results reveal that there are many tips that we can follow to accelerate performance.展开更多
Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, me...Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, meshing bordlines and undercut bordlines of toroidal drive are deduced, and the results obtained are consistent with the results discussed in literature [1] , and concludes that the absolute value of the induced normal curvature is usually smaller (less than 0.12, for example), and it increases as parameters φ 2, V and R increase, decreases as parameter r increases, and hardly varies with W 2, and the variation with a, i 21 is not definite.展开更多
We use squeezing and displacement operators and apply algebraic dynamics to develop a unified solution of general time-dependent two-photon algebra systems. A set of orthogonal-and-normalized solutions are derived wit...We use squeezing and displacement operators and apply algebraic dynamics to develop a unified solution of general time-dependent two-photon algebra systems. A set of orthogonal-and-normalized solutions are derived with the ground state being the conventional squeezed state. Landau system is given as an example.展开更多
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was...Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .展开更多
To simplify the process for identifying 12 types of symmetric variables in the canonical OR-coincidence(COC) algebra system, we propose a new symmetry detection algorithm based on OR-NXOR expansion. By analyzing the r...To simplify the process for identifying 12 types of symmetric variables in the canonical OR-coincidence(COC) algebra system, we propose a new symmetry detection algorithm based on OR-NXOR expansion. By analyzing the relationships between the coefficient matrices of sub-functions and the order coefficient subset matrices based on OR-NXOR expansion around two arbitrary logical variables, the constraint conditions of the order coefficient subset matrices are revealed for 12 types of symmetric variables. Based on the proposed constraints, the algorithm is realized by judging the order characteristic square value matrices. The proposed method avoids the transformation process from OR-NXOR expansion to AND-OR-NOT expansion, or to AND-XOR expansion, and solves the problem of completeness in the dj-map method. The application results show that, compared with traditional methods, the new algorithm is an optimal detection method in terms of applicability of the number of logical variables, detection type, and complexity of the identification process. The algorithm has been implemented in C language and tested on MCNC91 benchmarks. Experimental results show that the proposed algorithm is convenient and efficient.展开更多
We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations...We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.展开更多
This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. ...This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.展开更多
This paper give the algebraic criteria for all delay stability of two dimensional degenerate differential systems with delays and give two examples to illustrate the use of them.
The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomi...The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.展开更多
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
The algebraic structure and Poisson's integral theory of mechanico-electrical systems are studied. The Hamilton canonical equations and generalized Hamilton canonical equations and their the contravariant algebraic f...The algebraic structure and Poisson's integral theory of mechanico-electrical systems are studied. The Hamilton canonical equations and generalized Hamilton canonical equations and their the contravariant algebraic forms for mechanico-electrical systems are obtained. The Lie algebraic structure and the Poisson's integral theory of Lagrange mechanico-electrical systems are derived. The Lie algebraic structure admitted and Poisson's integral theory of the Lagrange-Maxwell mechanico-electrical systems are presented. Two examples are presented to illustrate these results.展开更多
Let E be an Archimedean Riesz algebra possessing a weak unit element e and a maximal disjoint system {e,: i∈I} in which e, is a projection element for each i. The principal band generated by eiis denoted by B(ei). T...Let E be an Archimedean Riesz algebra possessing a weak unit element e and a maximal disjoint system {e,: i∈I} in which e, is a projection element for each i. The principal band generated by eiis denoted by B(ei). The main result in this paper says that if there exists a completely regular Hausdorff space X such that E is Riesz algebra isomorphic to C(X) then for every i ∈ I there exists a completely regular Hausdorff space X, such that B(ei) is Riesz algebra isomorphic to C(Xi). Under an additional condition the inverse holds.展开更多
Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are re...Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are redefined,qualitative algebraic equations can be transformed into signed direct graphs,which are frequently used to predict the trend of dynamic changes.However,it is difficult to use traditional qualitative algebra methods based on artificial trial and error to solve a complex problem for dynamic trends.An important aspect of modern qualitative algebra is to model and characterize complex systems with the corresponding computer-aided automatic reasoning.In this study,a qualitative affection equation based on multiple conditions is proposed,which enables the signed di-rect graphs to describe complex systems better and improves the fault diagnosis resolution.The application to an industrial case shows that the method performs well.展开更多
We present a 9×9 S-matrix and E-matrix.A representation of specialized Birman-Wenzl-Murakami algebra is obtained.Starting from the given braid group representation S-matrix,we obtain the trigonometric solution of...We present a 9×9 S-matrix and E-matrix.A representation of specialized Birman-Wenzl-Murakami algebra is obtained.Starting from the given braid group representation S-matrix,we obtain the trigonometric solution of Yang-Baxter equation.A unitary matrix R(x,φ1,φ2)is generated via the Yang-Baxterization approach.Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x,φ1,φ2).Berry phase of this Yang-Baxter system is investigated in detail.展开更多
Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-d...Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.展开更多
In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the...In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.展开更多
A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to...A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to discrete event systems in order to represent its states evolution where the timing at which the state changes is taken into consideration. One of the most important performance issues to be considered in a discrete event system is its stability. Lyapunov theory provides the required tools needed to aboard the stability and stabilization problems for discrete event systems modeled with timed Petri nets whose mathematical model is given in terms of difference equations. By proving stability one guarantees a bound on the discrete event systems state dynamics. When the system is unstable, a sufficient condition to stabilize the system is given. It is shown that it is possible to restrict the discrete event systems state space in such a way that boundedness is achieved. However, the restriction is not numerically precisely known. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra, which is assigned to the timed Petri net graphical model.展开更多
Behaviour detection models based on automata have been studied widely. By add- ing edge ε, the local automata are combined into global automata to describe and detect soft- ware behaviour. However, these methods in- ...Behaviour detection models based on automata have been studied widely. By add- ing edge ε, the local automata are combined into global automata to describe and detect soft- ware behaviour. However, these methods in- troduce nondeterminacy, leading to models that are imprecise or inefficient. We present a model of software Behaviour Detection based on Process Algebra and system call (BDPA). In this model, a system call is mapped into an action, and a function is mapped into a process We construct a process expression for each function to describe its behaviour. Without con- strutting automata or introducing nondeter- minacy, we use algebraic properties and algo- rithms to obtain a global process expression by combining the process expressions derived from each function. Behaviour detection rules and methods based on BDPA are determined by equivalence theory. Experiments demon- strate that the BDPA model has better preci- sion and efficiency than traditional methods.展开更多
文摘Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, accessible from anywhere, etc. However, there is still room for improvement. Computer algebra system (CAS) optimization is the set of best practices and techniques to keep the CAS running optimally. Best practices are related to how to carry out a mathematical task or configure your system. In this paper, we are going to examine these techniques. The documentation sheets of CASs are the source of data that we used to compare them and examine their characteristics. The research results reveal that there are many tips that we can follow to accelerate performance.
文摘Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, meshing bordlines and undercut bordlines of toroidal drive are deduced, and the results obtained are consistent with the results discussed in literature [1] , and concludes that the absolute value of the induced normal curvature is usually smaller (less than 0.12, for example), and it increases as parameters φ 2, V and R increase, decreases as parameter r increases, and hardly varies with W 2, and the variation with a, i 21 is not definite.
基金the National Natural Science Foundation of China under Grant No.19775020the Special Fund for Theoretical Physics,the Doctoral Education Fund of the Education Ministry.
文摘We use squeezing and displacement operators and apply algebraic dynamics to develop a unified solution of general time-dependent two-photon algebra systems. A set of orthogonal-and-normalized solutions are derived with the ground state being the conventional squeezed state. Landau system is given as an example.
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .
文摘Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .
基金Project supported by the National Natural Science Foundation of China(Nos.61471314 and 61271124)the National Social Science Foundation of China(No.12AZD121)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LY13F010001)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Nos.2013BAH27F01 and 2013BAH27F02)
文摘To simplify the process for identifying 12 types of symmetric variables in the canonical OR-coincidence(COC) algebra system, we propose a new symmetry detection algorithm based on OR-NXOR expansion. By analyzing the relationships between the coefficient matrices of sub-functions and the order coefficient subset matrices based on OR-NXOR expansion around two arbitrary logical variables, the constraint conditions of the order coefficient subset matrices are revealed for 12 types of symmetric variables. Based on the proposed constraints, the algorithm is realized by judging the order characteristic square value matrices. The proposed method avoids the transformation process from OR-NXOR expansion to AND-OR-NOT expansion, or to AND-XOR expansion, and solves the problem of completeness in the dj-map method. The application results show that, compared with traditional methods, the new algorithm is an optimal detection method in terms of applicability of the number of logical variables, detection type, and complexity of the identification process. The algorithm has been implemented in C language and tested on MCNC91 benchmarks. Experimental results show that the proposed algorithm is convenient and efficient.
基金supported by the Natural Science Foundationof China (10471065)the Natural Science Foundation of Guangdong Province (N04010474)
文摘We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.
文摘This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.
文摘This paper give the algebraic criteria for all delay stability of two dimensional degenerate differential systems with delays and give two examples to illustrate the use of them.
基金This project was supported by the National Science Foundation of China (60572093).
文摘The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
基金Project supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10471145 and 10372053) and the Natural Science Foundation of Henan Provincial Government of China (Grant Nos 0311011400 and 0511022200).
文摘The algebraic structure and Poisson's integral theory of mechanico-electrical systems are studied. The Hamilton canonical equations and generalized Hamilton canonical equations and their the contravariant algebraic forms for mechanico-electrical systems are obtained. The Lie algebraic structure and the Poisson's integral theory of Lagrange mechanico-electrical systems are derived. The Lie algebraic structure admitted and Poisson's integral theory of the Lagrange-Maxwell mechanico-electrical systems are presented. Two examples are presented to illustrate these results.
文摘Let E be an Archimedean Riesz algebra possessing a weak unit element e and a maximal disjoint system {e,: i∈I} in which e, is a projection element for each i. The principal band generated by eiis denoted by B(ei). The main result in this paper says that if there exists a completely regular Hausdorff space X such that E is Riesz algebra isomorphic to C(X) then for every i ∈ I there exists a completely regular Hausdorff space X, such that B(ei) is Riesz algebra isomorphic to C(Xi). Under an additional condition the inverse holds.
基金Supported by the National High Technology Research and Development Program of China(2009AA04Z133)
文摘Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are redefined,qualitative algebraic equations can be transformed into signed direct graphs,which are frequently used to predict the trend of dynamic changes.However,it is difficult to use traditional qualitative algebra methods based on artificial trial and error to solve a complex problem for dynamic trends.An important aspect of modern qualitative algebra is to model and characterize complex systems with the corresponding computer-aided automatic reasoning.In this study,a qualitative affection equation based on multiple conditions is proposed,which enables the signed di-rect graphs to describe complex systems better and improves the fault diagnosis resolution.The application to an industrial case shows that the method performs well.
基金Supported by National Natural Science Foundation of China under Grants No.10875026
文摘We present a 9×9 S-matrix and E-matrix.A representation of specialized Birman-Wenzl-Murakami algebra is obtained.Starting from the given braid group representation S-matrix,we obtain the trigonometric solution of Yang-Baxter equation.A unitary matrix R(x,φ1,φ2)is generated via the Yang-Baxterization approach.Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x,φ1,φ2).Berry phase of this Yang-Baxter system is investigated in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672143) and the Natural Science Foundation of Henan Provinces China ((]rant Nos 0511022200 and 072300440220).
文摘Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.
文摘In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.
文摘A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to discrete event systems in order to represent its states evolution where the timing at which the state changes is taken into consideration. One of the most important performance issues to be considered in a discrete event system is its stability. Lyapunov theory provides the required tools needed to aboard the stability and stabilization problems for discrete event systems modeled with timed Petri nets whose mathematical model is given in terms of difference equations. By proving stability one guarantees a bound on the discrete event systems state dynamics. When the system is unstable, a sufficient condition to stabilize the system is given. It is shown that it is possible to restrict the discrete event systems state space in such a way that boundedness is achieved. However, the restriction is not numerically precisely known. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra, which is assigned to the timed Petri net graphical model.
基金supported by the Fund of National Natural Science Project under Grant No.61272125the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20121333110014the Hebei Provincial Natural Science Foundation under Grant No.F2011203234
文摘Behaviour detection models based on automata have been studied widely. By add- ing edge ε, the local automata are combined into global automata to describe and detect soft- ware behaviour. However, these methods in- troduce nondeterminacy, leading to models that are imprecise or inefficient. We present a model of software Behaviour Detection based on Process Algebra and system call (BDPA). In this model, a system call is mapped into an action, and a function is mapped into a process We construct a process expression for each function to describe its behaviour. Without con- strutting automata or introducing nondeter- minacy, we use algebraic properties and algo- rithms to obtain a global process expression by combining the process expressions derived from each function. Behaviour detection rules and methods based on BDPA are determined by equivalence theory. Experiments demon- strate that the BDPA model has better preci- sion and efficiency than traditional methods.