Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms hav...Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.展开更多
This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG dat...This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG database of China, it obtained the numeral indexes for each algorithm. Then by using the automatic diagnostic program developed by Shanghai Zhongshan Hospital, it also got the parameters of the reconstructed signals from linear approximation distance threshold (LADT), wavelet transform (WT), differential pulse code modulation (DPCM) and discrete cosine transform (DCT) algorithm. The results show that when the index of percent of root mean square difference(PRD) is less than 2.5%, the diagnostic agreement ratio is more than 90%; the index of PRD cannot completely show the damage of significant clinical information; the performance of wavelet algorithm exceeds other methods in the same compression ratio (CR). For the statistical result of the parameters of various methods and the clinical diagnostic results, it is of certain value and originality in the field of ECG compression research.展开更多
In this article we summarize some aperiodic checkpoint placement algorithms for a software system over infinite and finite operation time horizons, and compare them in terms of computational accuracy. The underlying p...In this article we summarize some aperiodic checkpoint placement algorithms for a software system over infinite and finite operation time horizons, and compare them in terms of computational accuracy. The underlying problem is formulated as the maximization of steady-state system availability and is to determine the optimal aperiodic checkpoint sequence. We present two exact computation algorithms in both forward and backward manners and two approximate ones;constant hazard approximation and fluid approximation, toward this end. In numerical examples with Weibull system failure time distribution, it is shown that the combined algorithm with the fluid approximation can calculate effectively the exact solutions on the optimal aperiodic checkpoint sequence.展开更多
针对遗传规划算法容易陷入局部最优解与局部搜索过慢的问题,提出一种基于语义聚类的遗传规划算法(genetic programming algorithm based on semantic clustering,SCGP),比较不同聚类算法对SCGP表现的影响。同时提出一种基于子种群规模...针对遗传规划算法容易陷入局部最优解与局部搜索过慢的问题,提出一种基于语义聚类的遗传规划算法(genetic programming algorithm based on semantic clustering,SCGP),比较不同聚类算法对SCGP表现的影响。同时提出一种基于子种群规模的自适应适应度函数,提高局部搜索能力。在多个基准问题上对比标准遗传规划、几何语义遗传规划、K均值聚类遗传规划与SCGP,实验结果表明,SCGP算法在拟合能力和泛化能力上都有较大改善。在诸多聚类方法中,层次聚类嵌入的SCGP算法在基准问题上的泛化能力最优,与标准遗传规划、几何语义遗传规划、K均值聚类遗传规划相比,分别提高了32.36%、61.29%、20.53%。展开更多
The study and comparison of sequences of characters from a finite alphabet is relevant to various areas of science, notably molecular biology. The measurement of sequence similarity involves the consideration of the p...The study and comparison of sequences of characters from a finite alphabet is relevant to various areas of science, notably molecular biology. The measurement of sequence similarity involves the consideration of the possible sequence alignments in order to find an optimal one for which the “distance” between sequences is minimum. In biology informatics area, it is a more important and difficult problem due to the long length (100 at least) of sequence, this cause the compute complexity and large memory require. By associating a path in a lattice to each alignment, a geometric insight can be brought into the problem of finding an optimal alignment, this give an obvious encoding of each path. This problem can be solved by applying genetic algorithm, which is more efficient than dynamic programming and hidden Markov model using commomly now.展开更多
Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object ima...Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy.展开更多
A new deterministic formulation,called the conditional expectation formulation,is proposed for dynamic stochastic programming problems in order to overcome some disadvantages of existing deterministic formulations.We ...A new deterministic formulation,called the conditional expectation formulation,is proposed for dynamic stochastic programming problems in order to overcome some disadvantages of existing deterministic formulations.We then check the impact of the new deterministic formulation and other two deterministic formulations on the corresponding problem size,nonzero elements and solution time by solving some typical dynamic stochastic programming problems with different interior point algorithms.Numerical results show the advantage and application of the new deterministic formulation.展开更多
文摘Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.
文摘This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG database of China, it obtained the numeral indexes for each algorithm. Then by using the automatic diagnostic program developed by Shanghai Zhongshan Hospital, it also got the parameters of the reconstructed signals from linear approximation distance threshold (LADT), wavelet transform (WT), differential pulse code modulation (DPCM) and discrete cosine transform (DCT) algorithm. The results show that when the index of percent of root mean square difference(PRD) is less than 2.5%, the diagnostic agreement ratio is more than 90%; the index of PRD cannot completely show the damage of significant clinical information; the performance of wavelet algorithm exceeds other methods in the same compression ratio (CR). For the statistical result of the parameters of various methods and the clinical diagnostic results, it is of certain value and originality in the field of ECG compression research.
文摘In this article we summarize some aperiodic checkpoint placement algorithms for a software system over infinite and finite operation time horizons, and compare them in terms of computational accuracy. The underlying problem is formulated as the maximization of steady-state system availability and is to determine the optimal aperiodic checkpoint sequence. We present two exact computation algorithms in both forward and backward manners and two approximate ones;constant hazard approximation and fluid approximation, toward this end. In numerical examples with Weibull system failure time distribution, it is shown that the combined algorithm with the fluid approximation can calculate effectively the exact solutions on the optimal aperiodic checkpoint sequence.
文摘数据驱动的多元化发展导致数据异构性增强、维度提升和特征量规模扩大,给贸易经济分析带来更大挑战。为了提高贸易经济分析的科学性,采用非平行超平面支持向量机算法(support vector machine,SVM)对贸易经济进行预测分析。首先,根据贸易经济影响因素进行主成分分析,获取影响贸易经济的关键特征,并对特征进行量化和去噪处理。然后,采用广义特征值最接近支持向量机(proximal support vector machine via generalized eigenvalues,GEPSVM)进行贸易经济预测分类。根据预测指标要求,选择核函数GEPSVM算法(KGEPSVM算法)对分类的非平行超平面求解,通过类别划分函数获得经济预测结果。实证分析表明,对比常用的非平行超平面支持向量机算法,所提算法的贸易经济预测性能更优,而且在常用贸易经济指标的预测中,表现出较高预测精度和稳定性。
文摘针对遗传规划算法容易陷入局部最优解与局部搜索过慢的问题,提出一种基于语义聚类的遗传规划算法(genetic programming algorithm based on semantic clustering,SCGP),比较不同聚类算法对SCGP表现的影响。同时提出一种基于子种群规模的自适应适应度函数,提高局部搜索能力。在多个基准问题上对比标准遗传规划、几何语义遗传规划、K均值聚类遗传规划与SCGP,实验结果表明,SCGP算法在拟合能力和泛化能力上都有较大改善。在诸多聚类方法中,层次聚类嵌入的SCGP算法在基准问题上的泛化能力最优,与标准遗传规划、几何语义遗传规划、K均值聚类遗传规划相比,分别提高了32.36%、61.29%、20.53%。
文摘The study and comparison of sequences of characters from a finite alphabet is relevant to various areas of science, notably molecular biology. The measurement of sequence similarity involves the consideration of the possible sequence alignments in order to find an optimal one for which the “distance” between sequences is minimum. In biology informatics area, it is a more important and difficult problem due to the long length (100 at least) of sequence, this cause the compute complexity and large memory require. By associating a path in a lattice to each alignment, a geometric insight can be brought into the problem of finding an optimal alignment, this give an obvious encoding of each path. This problem can be solved by applying genetic algorithm, which is more efficient than dynamic programming and hidden Markov model using commomly now.
基金Supported by Chinese National Natural Science Foundation(51208016)Beijing Natural Science Foundation(8122008)Beijing Education Commission Fund(KM201310005023)
文摘Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy.
基金This research was partially supported by the Natural Science Research Foundation of Shaanxi Province(2001SL09)
文摘A new deterministic formulation,called the conditional expectation formulation,is proposed for dynamic stochastic programming problems in order to overcome some disadvantages of existing deterministic formulations.We then check the impact of the new deterministic formulation and other two deterministic formulations on the corresponding problem size,nonzero elements and solution time by solving some typical dynamic stochastic programming problems with different interior point algorithms.Numerical results show the advantage and application of the new deterministic formulation.