Demand forecasting and big data analytics in supply chain management are gaining interest.This is attributed to the wide range of big data analytics in supply chain management,in addition to demand forecasting,and beh...Demand forecasting and big data analytics in supply chain management are gaining interest.This is attributed to the wide range of big data analytics in supply chain management,in addition to demand forecasting,and behavioral analysis.In this article,we studied the application of big data analytics forecasting in supply chain demand forecasting in the automotive parts industry to propose classifications of these applications,identify gaps,and provide ideas for future research.Algorithms will then be classified and then applied in supply chain management such as neural networks,k-nearest neighbors,time series forecasting,clustering,regression analysis,support vector regression and support vector machines.An extensive hierarchical model for short-term auto parts demand assess-ment was employed to avoid the shortcomings of the earlier models and to close the gap that regarded mainly a single time series.The concept of extensive relevance assessment was proposed,and subsequently methods to reflect the relevance of automotive demand factors were discussed.Using a wide range of skills,the factors and co-factors are expressed in the form of a correlation characteristic matrix to ensure the degree of influence of each factor on the demand for automotive components.Then,it is compared with the existing data and predicted the short-term historical data.The result proved the predictive error is less than 6%,which supports the validity of the prediction method.This research offers the basis for the macroeconomic regulation of the government and the production of auto parts manufacturers.展开更多
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,...Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.展开更多
Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the pe...Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference.展开更多
文摘Demand forecasting and big data analytics in supply chain management are gaining interest.This is attributed to the wide range of big data analytics in supply chain management,in addition to demand forecasting,and behavioral analysis.In this article,we studied the application of big data analytics forecasting in supply chain demand forecasting in the automotive parts industry to propose classifications of these applications,identify gaps,and provide ideas for future research.Algorithms will then be classified and then applied in supply chain management such as neural networks,k-nearest neighbors,time series forecasting,clustering,regression analysis,support vector regression and support vector machines.An extensive hierarchical model for short-term auto parts demand assess-ment was employed to avoid the shortcomings of the earlier models and to close the gap that regarded mainly a single time series.The concept of extensive relevance assessment was proposed,and subsequently methods to reflect the relevance of automotive demand factors were discussed.Using a wide range of skills,the factors and co-factors are expressed in the form of a correlation characteristic matrix to ensure the degree of influence of each factor on the demand for automotive components.Then,it is compared with the existing data and predicted the short-term historical data.The result proved the predictive error is less than 6%,which supports the validity of the prediction method.This research offers the basis for the macroeconomic regulation of the government and the production of auto parts manufacturers.
基金supported by the National Natural Science Foundation of China (No.11402288)
文摘Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.
文摘Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference.