为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。...为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。展开更多
光伏电网频率调整过程中,依靠常规Smith预估控制器实现电网调频控制,对模型精度具有较强的依赖性,控制策略实施后最大频率变化率(rate of change of frequency,RoCoF)较大。因此,提出基于改进型Smith预估计器与大数据的光伏电网调频逐...光伏电网频率调整过程中,依靠常规Smith预估控制器实现电网调频控制,对模型精度具有较强的依赖性,控制策略实施后最大频率变化率(rate of change of frequency,RoCoF)较大。因此,提出基于改进型Smith预估计器与大数据的光伏电网调频逐步惯性控制方法。首先,采集历史气象数据和光伏电网运行数据,应用大数据分析领域的密度峰值聚类算法进行划分处理,再筛选相似日数据输入长短期记忆网络中,预测出未来光伏发电的功率变化;然后,依托逐步惯性控制思想,设计包含短时超发、转速恢复等多个阶段的电网调频控制策略,将模糊自适应比例-积分-微分(proportion-integration-differentiation,PID)控制器融入常规Smith预估计器,从而升级得到优化版的Smith预估计器;最后,在不受被控模型变化影响的情况下,依据预估补偿原理完成逐步惯性调频控制,并应用麻雀搜索算法求解出最优控制参数。实验结果表明:该控制方法实施后,光伏电网运行过程中最大RoCoF仅为0.086 Hz/s,有效降低了对模型精度的依赖性,保证了电力系统的稳定运行。展开更多
文摘为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。
文摘光伏电网频率调整过程中,依靠常规Smith预估控制器实现电网调频控制,对模型精度具有较强的依赖性,控制策略实施后最大频率变化率(rate of change of frequency,RoCoF)较大。因此,提出基于改进型Smith预估计器与大数据的光伏电网调频逐步惯性控制方法。首先,采集历史气象数据和光伏电网运行数据,应用大数据分析领域的密度峰值聚类算法进行划分处理,再筛选相似日数据输入长短期记忆网络中,预测出未来光伏发电的功率变化;然后,依托逐步惯性控制思想,设计包含短时超发、转速恢复等多个阶段的电网调频控制策略,将模糊自适应比例-积分-微分(proportion-integration-differentiation,PID)控制器融入常规Smith预估计器,从而升级得到优化版的Smith预估计器;最后,在不受被控模型变化影响的情况下,依据预估补偿原理完成逐步惯性调频控制,并应用麻雀搜索算法求解出最优控制参数。实验结果表明:该控制方法实施后,光伏电网运行过程中最大RoCoF仅为0.086 Hz/s,有效降低了对模型精度的依赖性,保证了电力系统的稳定运行。