Nonlocal symmetry and explicit solution of the integrable Alice-Bob modified Korteweg-de Vries(ABm Kd V) equation is discussed, which has been established by the aid of the shifted parity and delayed time reversal to ...Nonlocal symmetry and explicit solution of the integrable Alice-Bob modified Korteweg-de Vries(ABm Kd V) equation is discussed, which has been established by the aid of the shifted parity and delayed time reversal to describe two-place events. Based on the Lax pair which contains the two-order partial derivative, the Lie symmetry group method is successfully applied to find the exact invariant solution for the AB-m Kd V equation with nonlocal symmetry by introducing one suitable auxiliary variable. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to some specific functions are derived. Figures show the physical phenomenon, that is, "the shifted parity and delayed time reversal to describe two-place events".展开更多
Starting from the truncated Painlev′e expansion, the residual symmetry of the Alice-Bob modified Kortewegde Vries(AB-mKdV) equation is derived. The residual symmetry is localized and the AB-mKdV equation is transform...Starting from the truncated Painlev′e expansion, the residual symmetry of the Alice-Bob modified Kortewegde Vries(AB-mKdV) equation is derived. The residual symmetry is localized and the AB-mKdV equation is transformed into an enlarged system by introducing one new variable. Based on Lie's first theorem, the finite transformation is obtained from the localized residual symmetry. Further, considering the linear superposition of multiple residual symmetries gives rises to N-th B?cklund transformation in the form of the determinant. Moreover, the P_sT_d(the shifted parity and delayed time reversal) symmetric exact solutions(including invariant solution, breaking solution and breaking interaction solution) of AB-mKdV equation are presented and two classes of interaction solutions are depicted by using the particular functions with numerical simulation.展开更多
The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With th...The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.展开更多
The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding ...The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding solitary wave and shock wave ones. Especially, exact solutions for the three-component system are presented in detail and graphically.展开更多
In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an a...In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN (t) for the original diagonal one.展开更多
In this paper, an implicit symmetry constraint is calculated and its associated binary nonlinearization of the Lax pairs and the adjoint Lax pairs is carried out for the modified Korteweg-de Vries (mKdV) equation. Aft...In this paper, an implicit symmetry constraint is calculated and its associated binary nonlinearization of the Lax pairs and the adjoint Lax pairs is carried out for the modified Korteweg-de Vries (mKdV) equation. After introducing two new inde-pendent variables, we find that under the implicit symmetry constraint, the spatial part and the temporal part of the mKdV equation are decomposed into two finite-dimensional systems. Furthermore we prove that the obtained finite-dimensional systems are Hamiltonian systems and completely integrable in the Liouville sense.展开更多
The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is th...The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is the modified KdV (Korteweg-de Vries) equation. A peculiarity of the obtained solutions is that they form packages constituted by combinations of waves belonging to the two main families of well-known bright and dark solitary waves. This putting together creates competitions between the different components of the considered packages which, following the values assigned to the parameters of the considered system and in relation to those of the wave parameters, generate hybrid or multi-form structures. The direct method of resolution which made possible the obtained results is that of Bogning-Djeumen Tchaho-Kofane extended to the new implicit Bogning functions. The existence conditions of some solutions are obtained. The numerical simulations carried out with a view to testing the observable and applicable characters of the obtained solutions revealed their stabilities over a relatively long time, and at the same time, confirmed the recommended theoretical forecasts. We are convinced that the solutions proposed as part of this work will make it possible to detect, understand and explain some physical phenomena linked to fluid molecular interactions, former or new, which constantly occur on the fluid surfaces, mainly at the shallow water surface.展开更多
In this paper,we investigate the fifth-order modified Korteweg-de Vries(mKdV)equation on the half-line via the Fokas unified transformation approach.We show that the solution u(x,t)of the fifth-order mKdV equation can...In this paper,we investigate the fifth-order modified Korteweg-de Vries(mKdV)equation on the half-line via the Fokas unified transformation approach.We show that the solution u(x,t)of the fifth-order mKdV equation can be represented by the solution of the matrix Riemann-Hilbert problem constructed on the plane of complex spectral parameter θ.The jump matrix L(x,t,θ)has an explicit representation dependent on x,t and it can be represented exactly by the two pairs of spectral functions y(θ),z(θ)(obtained from the initial value u0(x))and Y(θ),Z(θ)(obtained from the boundary conditions v0(t),{vk(t)}_(1)^(4)).Furthermore,the two pairs of spectral functions y(θ),z(θ)and Y(θ),Z(θ)are not independent of each other,but are related to the compatibility condition,the so-called global relation.展开更多
This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave i...This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.展开更多
In this paper, we obtain some linear estimates, trilinear estimates. Through these estimates , we prove the local wellposeness of modified Korteweg-de Vries equation in a quarter plane.
In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background c...In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background condition and the other one is given through the nonzero background.Especially, for the nonzero background case, we choose a special spectral parameter such that the nonzero background solution is changed into the rational travelling waves. Finally, we also give a simple analysis of the soliton as the time t is large, then we give the comparison between the exact solution and the asymptotic solution.展开更多
A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presen...A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.展开更多
In this paper,a Crank-Nicolson-type finite difference method is proposed for computing the soliton solutions of a complex modifed Korteweg de Vries(MKdV)equation(which is equivalent to the Sasa-Satsuma equation)with t...In this paper,a Crank-Nicolson-type finite difference method is proposed for computing the soliton solutions of a complex modifed Korteweg de Vries(MKdV)equation(which is equivalent to the Sasa-Satsuma equation)with the vanishing boundary condition.It is proved that such a numerical scheme has the second order accuracy both in space and time,and conserves the mass in the discrete level.Meanwhile,the resuling scheme is shown to be unconditionally stable via the von Nuemann analysis.In addition,an iterative method and the Thomas algorithm are used together to enhance the computational efficiency.In numerical experiments,this method is used to simulate the single-soliton propagation and two-soliton collisions in the complex MKdV equation.The numerical accuracy,mass conservation and linear stability are tested to assess the scheme's performance.展开更多
Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method...Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux transformations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking collisions of the(2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and kink soliton solutions of the(2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate the interactions of water waves in shallow water.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.11705077 and 11775104Natural Science Foundation of Zhejiang Province under Grant No.LY14A010005Scientific Research Foundation of the First-Class Discipline of Zhejiang Province(B)(No.201601)
文摘Nonlocal symmetry and explicit solution of the integrable Alice-Bob modified Korteweg-de Vries(ABm Kd V) equation is discussed, which has been established by the aid of the shifted parity and delayed time reversal to describe two-place events. Based on the Lax pair which contains the two-order partial derivative, the Lie symmetry group method is successfully applied to find the exact invariant solution for the AB-m Kd V equation with nonlocal symmetry by introducing one suitable auxiliary variable. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to some specific functions are derived. Figures show the physical phenomenon, that is, "the shifted parity and delayed time reversal to describe two-place events".
基金Supported by the National Natural Science Foundation of China under Grant Nos.11705077 and 11775104
文摘Starting from the truncated Painlev′e expansion, the residual symmetry of the Alice-Bob modified Kortewegde Vries(AB-mKdV) equation is derived. The residual symmetry is localized and the AB-mKdV equation is transformed into an enlarged system by introducing one new variable. Based on Lie's first theorem, the finite transformation is obtained from the localized residual symmetry. Further, considering the linear superposition of multiple residual symmetries gives rises to N-th B?cklund transformation in the form of the determinant. Moreover, the P_sT_d(the shifted parity and delayed time reversal) symmetric exact solutions(including invariant solution, breaking solution and breaking interaction solution) of AB-mKdV equation are presented and two classes of interaction solutions are depicted by using the particular functions with numerical simulation.
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+2 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006Chinese Ministry of Education, and Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No. KM201010772020
文摘The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.
基金supported by National Natural Science Foundation of China under Grant Nos. 60772023 and 60372095the Key Project of the Ministry of Education under Grant No. 106033+3 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronautics,the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20060006024the Ministry of Education
文摘The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding solitary wave and shock wave ones. Especially, exact solutions for the three-component system are presented in detail and graphically.
基金National Natural Science Foundation of China under Grant Nos.10371070 and 10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers
文摘In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN (t) for the original diagonal one.
文摘In this paper, an implicit symmetry constraint is calculated and its associated binary nonlinearization of the Lax pairs and the adjoint Lax pairs is carried out for the modified Korteweg-de Vries (mKdV) equation. After introducing two new inde-pendent variables, we find that under the implicit symmetry constraint, the spatial part and the temporal part of the mKdV equation are decomposed into two finite-dimensional systems. Furthermore we prove that the obtained finite-dimensional systems are Hamiltonian systems and completely integrable in the Liouville sense.
文摘The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is the modified KdV (Korteweg-de Vries) equation. A peculiarity of the obtained solutions is that they form packages constituted by combinations of waves belonging to the two main families of well-known bright and dark solitary waves. This putting together creates competitions between the different components of the considered packages which, following the values assigned to the parameters of the considered system and in relation to those of the wave parameters, generate hybrid or multi-form structures. The direct method of resolution which made possible the obtained results is that of Bogning-Djeumen Tchaho-Kofane extended to the new implicit Bogning functions. The existence conditions of some solutions are obtained. The numerical simulations carried out with a view to testing the observable and applicable characters of the obtained solutions revealed their stabilities over a relatively long time, and at the same time, confirmed the recommended theoretical forecasts. We are convinced that the solutions proposed as part of this work will make it possible to detect, understand and explain some physical phenomena linked to fluid molecular interactions, former or new, which constantly occur on the fluid surfaces, mainly at the shallow water surface.
基金supported by the National Natural Science Foundation of China under Grant Nos.12147115 and 11835011the Natural Science Foundation of Anhui Province under Grant No.2108085QA09+3 种基金the University Natural Science Research Project of Anhui Province under Grant No.KJ2021A1094China Postdoctoral Science Foundation under Grant No.2022M712833the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No.22HASTIT019the Natural Science Foundation of Henan Province under Grant No.202300410524
文摘In this paper,we investigate the fifth-order modified Korteweg-de Vries(mKdV)equation on the half-line via the Fokas unified transformation approach.We show that the solution u(x,t)of the fifth-order mKdV equation can be represented by the solution of the matrix Riemann-Hilbert problem constructed on the plane of complex spectral parameter θ.The jump matrix L(x,t,θ)has an explicit representation dependent on x,t and it can be represented exactly by the two pairs of spectral functions y(θ),z(θ)(obtained from the initial value u0(x))and Y(θ),Z(θ)(obtained from the boundary conditions v0(t),{vk(t)}_(1)^(4)).Furthermore,the two pairs of spectral functions y(θ),z(θ)and Y(θ),Z(θ)are not independent of each other,but are related to the compatibility condition,the so-called global relation.
基金Supported by National Natural Science Foundation of China under Grant No.11505090Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009
文摘This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.
文摘In this paper, we obtain some linear estimates, trilinear estimates. Through these estimates , we prove the local wellposeness of modified Korteweg-de Vries equation in a quarter plane.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2019QD018)National Natural Science Foundation of China(Grant Nos.11975143,12105161,61602188)+1 种基金CAS Key Laboratory of Science and Technology on Operational Oceanography(Grant No.OOST2021-05)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(Grant Nos.2017RCJJ068,2017RCJJ069)。
文摘In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background condition and the other one is given through the nonzero background.Especially, for the nonzero background case, we choose a special spectral parameter such that the nonzero background solution is changed into the rational travelling waves. Finally, we also give a simple analysis of the soliton as the time t is large, then we give the comparison between the exact solution and the asymptotic solution.
基金Project supported by the National Natural Science Foundation of China (No. 60874039)Shanghai Leading Academic Discipline Project (No. J50101)
文摘A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.
基金This work was parially supported by the Natural Science Foundation of Beijing Munisipality(Grant No.1212007)by the Science Foundations of China University of Petroleum,Beijing(Grant Nos.2462020YXZZ004 and 2462020XKJS02).
文摘In this paper,a Crank-Nicolson-type finite difference method is proposed for computing the soliton solutions of a complex modifed Korteweg de Vries(MKdV)equation(which is equivalent to the Sasa-Satsuma equation)with the vanishing boundary condition.It is proved that such a numerical scheme has the second order accuracy both in space and time,and conserves the mass in the discrete level.Meanwhile,the resuling scheme is shown to be unconditionally stable via the von Nuemann analysis.In addition,an iterative method and the Thomas algorithm are used together to enhance the computational efficiency.In numerical experiments,this method is used to simulate the single-soliton propagation and two-soliton collisions in the complex MKdV equation.The numerical accuracy,mass conservation and linear stability are tested to assess the scheme's performance.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11075055,11275072Innovative Research Team Program of the National Science Foundation of China under Grant No.61021104+3 种基金National High Technology Research and Development Program under Grant No.2011AA010101Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No.ZF1213Talent FundK.C.Wong Magna Fund in Ningbo University
文摘Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux transformations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking collisions of the(2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and kink soliton solutions of the(2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate the interactions of water waves in shallow water.