The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment syste...The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.展开更多
Shaft alignment is an important technique during installation and maintenance of a rotating machine. A high-precision laser alignment system has been designed with dual PSDs (Position Sensing Detector) to change tradi...Shaft alignment is an important technique during installation and maintenance of a rotating machine. A high-precision laser alignment system has been designed with dual PSDs (Position Sensing Detector) to change traditional manual way of shaft alignment and to make the measurement easier and more accurate. The system is comprised of two small measuring units (laser transmitter and detector) and a PDA (Personal Digital Assistant) with measurement software. The laser alignment system with dual PSDs was improved on a single PSD system, and yields higher measurement accuracy than the previous design, and has been successful for designing and implements actual shaft alignment. In the system, the range of offset measurement is ±4 mm, and the resolution is 1.5 μm, with accuracy being less than 2 μm.展开更多
Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexi...Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexible assembly system is just beginning in our country recently. To meet the requirements of automated posture alignment and join in digital assembly system for large aircraft components, a novel fitting fixture called 3-axis actuator is developed. On the basis of the actuators, three kinds of posture alignment system for large aircraft components are proposed, including the non-redundant system, the redundant actuating system, and the redundant leg system, and their constitutions and properties are introduced. Through deriving the feeding transmission stiffness model of single actuator and analyzing the inverse kinematics of these systems, the relationship between the external force and the changes of position and orientation of large aircraft component is obtained, and then the postural alignment stiffness models are established. With the method mentioned above, the postural alignment stiffness of three systems is computed by using the algebraic formulate, and the results show that redundant properties can increase system's postural alignment stiffness. As an example, a optimized layout of the assembly system for a given model of aircraft is developed, the results of application show that the layout has many advantages, such as high accuracy, stiffness, stability, reliability, efficiency and flexible, which can satisfy the requirement of aircraft digital assembly system well. The proposed study of postural alignment stiffness for different systems can supply the theoretic support for the optimization layout design of aircraft digital assembly system, and contribute to evaluate the system working performance of systems.展开更多
Shaft alignment is an important technique during installation and maintenance of a rotating machine. A high-precision laser alignment system has been designed with dual PSDs (Position Sensing Detector) to change tradi...Shaft alignment is an important technique during installation and maintenance of a rotating machine. A high-precision laser alignment system has been designed with dual PSDs (Position Sensing Detector) to change traditional manual way of shaft alignment and to make the measurement easier and more accurate. The system is comprised of two small measuring units (laser transmitter and detector) and a PDA (Personal Digital Assistant) with the measurement software. The laser alignment system with dual PSDs was improved on a single PSD system,and it gets higher measurement accuracy than the previous design,and it has been succeeded in designing and implement for actual shaft alignment. In the system,the range of offset measurement is ±4 mm,and the resolution is 1.5 μm,and the accuracy is less than 2 μm.展开更多
Autofocus method based on the analysis of image content information is investigated to reduce the alignment error resulting from mark positioning uncertainty due to defocus in microstructure layered fabrication proces...Autofocus method based on the analysis of image content information is investigated to reduce the alignment error resulting from mark positioning uncertainty due to defocus in microstructure layered fabrication process based on multilevel imprint lithography. The applicability of several autofocus functions to the alignment mark images is evaluated concerning their uniformity, sharpness near peak, reliability and measure computation efficiency and the most suitable one based on power spectrum in frequency domain (PSFD) is adopted. To solve the problem of too much computation amount needed in PSFD algorithm, the strategy of interested region detection and effective image reconstruction is proposed and the algorithm efficiency is improved. The test results show that the computation time is reduced from 0.316 s to 0.023 s under the same conditions while the other merits of the function are preserved, which indicates that the modified algorithm can meet the mark image autofocusing requirements in response time, accuracy and robustness. The alignment error due to defocus which is about 0.5 μm indicated by experimental results can be reduced or eliminated by the autofocusing implementation.展开更多
Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of ...Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of INS self alignment. Through observability analysis and computer simulation, it is demonstrated that the azimuth alignment is as quick as horizontal alignment, the accuracy of horizontal alignment is improved, and the gyros errors can be estimated quickly and precisely.展开更多
A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive h...A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive half-ball shaped end-effector, and the positioners together with the wing are considered as a 3-PPPS (P denotes a prismatic joint and S denotes a spherical joint) redundantly actuated parallel mechanism. The kinematic model of this system is established and a trajectory planning method is introduced. A complete analysis of inverse dynamics is carried out with the Newton-Euler algorithm, which is used to find the desired actuating torque in the design and path planning phase. Simulation analysis of the displacement and actuating torque of each joint of the positioners based on inverse kinematics and dynamics is conducted, and the results show that the system is feasible for the posture alignment of aircraft wings.展开更多
In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing t...In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.展开更多
A laser alignment system is applied to a high power laser facility for inertial confinement fusion. A design of the automated, close-loop laser beam alignment system is described. Its function is to sense beam alignme...A laser alignment system is applied to a high power laser facility for inertial confinement fusion. A design of the automated, close-loop laser beam alignment system is described. Its function is to sense beam alignment errors in a laser beam transport system and automatically steer mirrors preceding the sensor location as required to maintain beam alignment. The laser beam is sampled by a sensor package, which uses video cameras to sense pointing and centering errors. The camera outputs are fed to a personal computer, which includes video digitizers and uses image storage and software to sense the centroid of the image. Signals are sent through the computer to a stepper motor controller, which drives stepper motors on mirror mounts preceding the beam sampling location to return the beam alignment to the prescribed condition. Its optical principles and key techniques are given. The pointing and centering sensitivities of the beam alignment sensor package are analyzed. The system has been verified on the展开更多
The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed....The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed. To consider the limited maneuver level performed by the ship, a new filter algorithm for transfer alignment methods using velocity and angular rate matching is first derived. And then an improved method using integrated velocity and integrated angular rate matching is introduced to reduce the effect of the ship body flexure. The simulation results show the feasibility and validity of the proposed transfer alignment algorithms.展开更多
There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignme...There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.展开更多
The transfer alignment of SINS/GPS navigation system of a high-speed marine missile was investigated. With the help of the big acceleration of a high-speed missile, the transfer alignment was changed into a three-time...The transfer alignment of SINS/GPS navigation system of a high-speed marine missile was investigated. With the help of the big acceleration of a high-speed missile, the transfer alignment was changed into a three-time alignment. The azimuth alignment was coarsely finished in 10s in the first time alignment, the horizontal alignment was accurately and rapidly finished in the second time alignment, and the azimuth alignment was accurately finished in the third time alignment. Because the second time alignment and the third time alignment were finished by GPS after the missile was launched, the horizontal alignment and the second azimuth alignment got rid of the influence of the warship body flexibility deforming. The precision and rapidity of the horizontal alignment were prominently increased due to the vertical launch of the marine missile with the big acceleration. Simulation verifies the effectiveness of the proposed alignment method.展开更多
In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived...In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived. By utilizing constructed H∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H∞ filter is much faster and with excellent robustness.展开更多
BACKGROUND There appears to be a close relationship between deformities at the knee joint and at the hindfoot in patients with knee osteoarthritis(OA).Despite this intrinsic link,there is a dearth of studies investiga...BACKGROUND There appears to be a close relationship between deformities at the knee joint and at the hindfoot in patients with knee osteoarthritis(OA).Despite this intrinsic link,there is a dearth of studies investigating alterations in hindfoot alignment following total knee arthroplasty(TKA)in patients with knee OA.AIM To evaluate changes in alignment of the hindfoot following TKA,foot and ankle clinical outcomes in terms of subjective clinical scoring tools following surgical intervention,and to analyse the level of evidence(LOE)and quality of evidence(QOE)of the included studies.METHODS MEDLINE,EMBASE and Cochrane Library databases were systematically reviewed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.Studies reporting changes in the postoperative alignment of the hindfoot following TKA were included.The level and QOE were recorded and assessed.RESULTS Eleven studies with a total of 1142 patients(1358 knees)met the inclusion/exclusion criteria.Six studies were of LOE II and 5 studies were of LOE III.Patients with preoperative varus knee deformity and valgus hindfoot deformity demonstrated improvement in hindfoot alignment post TKA.Patients with preoperative varus knee deformity and varus hindfoot deformity demonstrated no improvement in hindfoot alignment following TKA.Twelve different radiographic parameters were used to measure the alignment of the hindfoot across the included studies,with the tibio-calcaneal angle most frequently utilised(27.3%).CONCLUSION This systematic review demonstrated that the hindfoot may display compensatory changes in alignment following TKA in patients with knee OA.However,the marked heterogeneity between the included studies and poor QOE limits any meaningful cross sectional comparisons between studies.Further,well designed studies are necessary to determine the changes and outcomes of hindfoot alignment following TKA.展开更多
Beam alignment depends on CCD real-time image analysis and processing.In order to improve the quality of the alignment,multiple filters are used in far-field and near-field image processings.These multiple filters are...Beam alignment depends on CCD real-time image analysis and processing.In order to improve the quality of the alignment,multiple filters are used in far-field and near-field image processings.These multiple filters are constituted of an average filter and a median filter in different connection sequences,so that they can deal with different kinds of noise.To reduce the effect of the unknown nonlinear relationship between motor running steps and deviation pixels,a feasible methodology is offered to improve this phenomenon and a fuzzy algorithm is applied to the motor feedback control process.Because of the fuzzy control it is not necessary to establish an accurate mathematical model,so the impact of the nonlinear relationship will be reduced.展开更多
The complexity of business and information systems(IS)alignment is a growing concern for researchers and practitioners alike.The extant research on alignment architecture fails to consider the human viewpoint,which ma...The complexity of business and information systems(IS)alignment is a growing concern for researchers and practitioners alike.The extant research on alignment architecture fails to consider the human viewpoint,which makes it difficult to embrace emergent complexity.This paper contributes to the extant literature in the following ways.First,we combine an enterprise architecture(EA)framework with a human viewpoint to address alignment issues in the architecture design phase;second,we describe a dynamic alignment model by developing a humancentered meta-model that explains first-and second-order changes and their effects on alignment evolution.This paper provides better support for the theoretical research and the practical application of dynamic alignment.展开更多
Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the work...Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the working accuracy of SINS,but in self-alignment,the two indexes are often contradictory.In view of the limitations of conventional data processing algorithms,a novel method of compass alignment based on stored data and repeated navigation calculation for SINS is proposed.By means of data storage,the same data is used in different stages of the initial alignment,which is beneficial to shorten the initial alignment time and improve the alignment accuracy.In order to verify the correctness of the compass algorithm based on stored data and repeated navigation calculation,the simulation experiment was done.In summary,when the computer performance is sufficiently high,the compass alignment method based on the stored data and the forward and reverse navigation calculation can effectively improve the alignment speed and improve the alignment accuracy.展开更多
MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and headin...MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and heading reference systems (AHRS), which provide pitch and roll angles relative to the earth gravity vector, and heading angle relative to the north. However, the performance of sen- sors with low cost AHRS is not so good. The gyros are not sensitive enough to observe the earth an- gular velocity, so the traditional technique like alignment algorithm is invalid. The measurements of gyros become useless to determine the initial attitude matrix from navigation frame to body frame. The alignment algorithm is computed by the accelerometers and magnetometers. The process is es- tablished as an optimization problem of finding the maximum eigenvector. Meanwhile the sensitive analysis with respect to the biases of accelerometers is proposed. Then the recursive least squares al- gorithm (RLSA) is introduced. The comparison between the proposed method and RLSA is provid- ed. The results demonstrate its accuracy favorably and verify the feasibility of the proposed algo- rithm.展开更多
Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral pos...Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.展开更多
In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.Howe...In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.展开更多
基金supported by the Second Stage of Brain Korea 21 Projectssupported (in part) by the Solomon Mechanics Inc
文摘The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.
基金Project (No. 60337030) partly supported by the National NaturalScience Foundation of China
文摘Shaft alignment is an important technique during installation and maintenance of a rotating machine. A high-precision laser alignment system has been designed with dual PSDs (Position Sensing Detector) to change traditional manual way of shaft alignment and to make the measurement easier and more accurate. The system is comprised of two small measuring units (laser transmitter and detector) and a PDA (Personal Digital Assistant) with measurement software. The laser alignment system with dual PSDs was improved on a single PSD system, and yields higher measurement accuracy than the previous design, and has been successful for designing and implements actual shaft alignment. In the system, the range of offset measurement is ±4 mm, and the resolution is 1.5 μm, with accuracy being less than 2 μm.
文摘Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexible assembly system is just beginning in our country recently. To meet the requirements of automated posture alignment and join in digital assembly system for large aircraft components, a novel fitting fixture called 3-axis actuator is developed. On the basis of the actuators, three kinds of posture alignment system for large aircraft components are proposed, including the non-redundant system, the redundant actuating system, and the redundant leg system, and their constitutions and properties are introduced. Through deriving the feeding transmission stiffness model of single actuator and analyzing the inverse kinematics of these systems, the relationship between the external force and the changes of position and orientation of large aircraft component is obtained, and then the postural alignment stiffness models are established. With the method mentioned above, the postural alignment stiffness of three systems is computed by using the algebraic formulate, and the results show that redundant properties can increase system's postural alignment stiffness. As an example, a optimized layout of the assembly system for a given model of aircraft is developed, the results of application show that the layout has many advantages, such as high accuracy, stiffness, stability, reliability, efficiency and flexible, which can satisfy the requirement of aircraft digital assembly system well. The proposed study of postural alignment stiffness for different systems can supply the theoretic support for the optimization layout design of aircraft digital assembly system, and contribute to evaluate the system working performance of systems.
基金Funded by the National Natural Science Foundation of China (60337030) .
文摘Shaft alignment is an important technique during installation and maintenance of a rotating machine. A high-precision laser alignment system has been designed with dual PSDs (Position Sensing Detector) to change traditional manual way of shaft alignment and to make the measurement easier and more accurate. The system is comprised of two small measuring units (laser transmitter and detector) and a PDA (Personal Digital Assistant) with the measurement software. The laser alignment system with dual PSDs was improved on a single PSD system,and it gets higher measurement accuracy than the previous design,and it has been succeeded in designing and implement for actual shaft alignment. In the system,the range of offset measurement is ±4 mm,and the resolution is 1.5 μm,and the accuracy is less than 2 μm.
基金Supported by National Natural Science Foundation of China (No50305026)Open Foundation of Guangxi Key Lab for Manufacturing Systems and Advanced Manufacturing Technology (No07109008-025-K)
文摘Autofocus method based on the analysis of image content information is investigated to reduce the alignment error resulting from mark positioning uncertainty due to defocus in microstructure layered fabrication process based on multilevel imprint lithography. The applicability of several autofocus functions to the alignment mark images is evaluated concerning their uniformity, sharpness near peak, reliability and measure computation efficiency and the most suitable one based on power spectrum in frequency domain (PSFD) is adopted. To solve the problem of too much computation amount needed in PSFD algorithm, the strategy of interested region detection and effective image reconstruction is proposed and the algorithm efficiency is improved. The test results show that the computation time is reduced from 0.316 s to 0.023 s under the same conditions while the other merits of the function are preserved, which indicates that the modified algorithm can meet the mark image autofocusing requirements in response time, accuracy and robustness. The alignment error due to defocus which is about 0.5 μm indicated by experimental results can be reduced or eliminated by the autofocusing implementation.
文摘Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of INS self alignment. Through observability analysis and computer simulation, it is demonstrated that the azimuth alignment is as quick as horizontal alignment, the accuracy of horizontal alignment is improved, and the gyros errors can be estimated quickly and precisely.
文摘A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive half-ball shaped end-effector, and the positioners together with the wing are considered as a 3-PPPS (P denotes a prismatic joint and S denotes a spherical joint) redundantly actuated parallel mechanism. The kinematic model of this system is established and a trajectory planning method is introduced. A complete analysis of inverse dynamics is carried out with the Newton-Euler algorithm, which is used to find the desired actuating torque in the design and path planning phase. Simulation analysis of the displacement and actuating torque of each joint of the positioners based on inverse kinematics and dynamics is conducted, and the results show that the system is feasible for the posture alignment of aircraft wings.
文摘In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.
基金This work was supported by the auspies of the National 863 Project(863-804-5).
文摘A laser alignment system is applied to a high power laser facility for inertial confinement fusion. A design of the automated, close-loop laser beam alignment system is described. Its function is to sense beam alignment errors in a laser beam transport system and automatically steer mirrors preceding the sensor location as required to maintain beam alignment. The laser beam is sampled by a sensor package, which uses video cameras to sense pointing and centering errors. The camera outputs are fed to a personal computer, which includes video digitizers and uses image storage and software to sense the centroid of the image. Signals are sent through the computer to a stepper motor controller, which drives stepper motors on mirror mounts preceding the beam sampling location to return the beam alignment to the prescribed condition. Its optical principles and key techniques are given. The pointing and centering sensitivities of the beam alignment sensor package are analyzed. The system has been verified on the
基金supported by the Weapon Equipment Research Foundation in Advance(514090909HT0141).
文摘The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed. To consider the limited maneuver level performed by the ship, a new filter algorithm for transfer alignment methods using velocity and angular rate matching is first derived. And then an improved method using integrated velocity and integrated angular rate matching is introduced to reduce the effect of the ship body flexure. The simulation results show the feasibility and validity of the proposed transfer alignment algorithms.
基金the National Natural Science Foundationunder Grant No.60604019.
文摘There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.
文摘The transfer alignment of SINS/GPS navigation system of a high-speed marine missile was investigated. With the help of the big acceleration of a high-speed missile, the transfer alignment was changed into a three-time alignment. The azimuth alignment was coarsely finished in 10s in the first time alignment, the horizontal alignment was accurately and rapidly finished in the second time alignment, and the azimuth alignment was accurately finished in the third time alignment. Because the second time alignment and the third time alignment were finished by GPS after the missile was launched, the horizontal alignment and the second azimuth alignment got rid of the influence of the warship body flexibility deforming. The precision and rapidity of the horizontal alignment were prominently increased due to the vertical launch of the marine missile with the big acceleration. Simulation verifies the effectiveness of the proposed alignment method.
文摘In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived. By utilizing constructed H∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H∞ filter is much faster and with excellent robustness.
文摘BACKGROUND There appears to be a close relationship between deformities at the knee joint and at the hindfoot in patients with knee osteoarthritis(OA).Despite this intrinsic link,there is a dearth of studies investigating alterations in hindfoot alignment following total knee arthroplasty(TKA)in patients with knee OA.AIM To evaluate changes in alignment of the hindfoot following TKA,foot and ankle clinical outcomes in terms of subjective clinical scoring tools following surgical intervention,and to analyse the level of evidence(LOE)and quality of evidence(QOE)of the included studies.METHODS MEDLINE,EMBASE and Cochrane Library databases were systematically reviewed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.Studies reporting changes in the postoperative alignment of the hindfoot following TKA were included.The level and QOE were recorded and assessed.RESULTS Eleven studies with a total of 1142 patients(1358 knees)met the inclusion/exclusion criteria.Six studies were of LOE II and 5 studies were of LOE III.Patients with preoperative varus knee deformity and valgus hindfoot deformity demonstrated improvement in hindfoot alignment post TKA.Patients with preoperative varus knee deformity and varus hindfoot deformity demonstrated no improvement in hindfoot alignment following TKA.Twelve different radiographic parameters were used to measure the alignment of the hindfoot across the included studies,with the tibio-calcaneal angle most frequently utilised(27.3%).CONCLUSION This systematic review demonstrated that the hindfoot may display compensatory changes in alignment following TKA in patients with knee OA.However,the marked heterogeneity between the included studies and poor QOE limits any meaningful cross sectional comparisons between studies.Further,well designed studies are necessary to determine the changes and outcomes of hindfoot alignment following TKA.
基金supported by grants from the Chinese and Israeli cooperation project on high power laser technology(2010DFB70490)
文摘Beam alignment depends on CCD real-time image analysis and processing.In order to improve the quality of the alignment,multiple filters are used in far-field and near-field image processings.These multiple filters are constituted of an average filter and a median filter in different connection sequences,so that they can deal with different kinds of noise.To reduce the effect of the unknown nonlinear relationship between motor running steps and deviation pixels,a feasible methodology is offered to improve this phenomenon and a fuzzy algorithm is applied to the motor feedback control process.Because of the fuzzy control it is not necessary to establish an accurate mathematical model,so the impact of the nonlinear relationship will be reduced.
文摘The complexity of business and information systems(IS)alignment is a growing concern for researchers and practitioners alike.The extant research on alignment architecture fails to consider the human viewpoint,which makes it difficult to embrace emergent complexity.This paper contributes to the extant literature in the following ways.First,we combine an enterprise architecture(EA)framework with a human viewpoint to address alignment issues in the architecture design phase;second,we describe a dynamic alignment model by developing a humancentered meta-model that explains first-and second-order changes and their effects on alignment evolution.This paper provides better support for the theoretical research and the practical application of dynamic alignment.
基金This work was supported by the National Nature Science Foundation of China(Grant No.5200110367)Natural Science Foundation of Jiangsu Province(Grant No.SBK2020043219)+1 种基金Scientific Research Foundation of the Higher Education Institutions of Jiangsu Province(Grant No.19KJB510052)NUPTSF(Grant No.NY219023).
文摘Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the working accuracy of SINS,but in self-alignment,the two indexes are often contradictory.In view of the limitations of conventional data processing algorithms,a novel method of compass alignment based on stored data and repeated navigation calculation for SINS is proposed.By means of data storage,the same data is used in different stages of the initial alignment,which is beneficial to shorten the initial alignment time and improve the alignment accuracy.In order to verify the correctness of the compass algorithm based on stored data and repeated navigation calculation,the simulation experiment was done.In summary,when the computer performance is sufficiently high,the compass alignment method based on the stored data and the forward and reverse navigation calculation can effectively improve the alignment speed and improve the alignment accuracy.
基金Supported by the National Natural Science Foundation of China(No.60905056)
文摘MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and heading reference systems (AHRS), which provide pitch and roll angles relative to the earth gravity vector, and heading angle relative to the north. However, the performance of sen- sors with low cost AHRS is not so good. The gyros are not sensitive enough to observe the earth an- gular velocity, so the traditional technique like alignment algorithm is invalid. The measurements of gyros become useless to determine the initial attitude matrix from navigation frame to body frame. The alignment algorithm is computed by the accelerometers and magnetometers. The process is es- tablished as an optimization problem of finding the maximum eigenvector. Meanwhile the sensitive analysis with respect to the biases of accelerometers is proposed. Then the recursive least squares al- gorithm (RLSA) is introduced. The comparison between the proposed method and RLSA is provid- ed. The results demonstrate its accuracy favorably and verify the feasibility of the proposed algo- rithm.
文摘Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.
基金supported in part by NSF of Shaanxi Province under Grant 2021JM-143the Fundamental Research Funds for the Central Universities under Grant JB211502+5 种基金the Project of Key Laboratory of Science&Technology on Communication Network under Grant 6142104200412the National Natural Science Foundation of China under Grant 62072351the Academy of Finland under Grant 308087,Grant 335262 and Grant 345072the Shaanxi Innovation Team Project under Grant 2018TD-007the 111 Project under Grant B16037,JSPS KAKENHI Grant Number JP20K14742the Project of Cyber Security Establishment with Inter University Cooperation.
文摘In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.