期刊文献+
共找到1,478篇文章
< 1 2 74 >
每页显示 20 50 100
Tests on Alkali-Activated Slag Foamed Concrete with Various Water-Binder Ratios and Substitution Levels of Fly Ash 被引量:6
1
作者 Keun-Hyeok Yang Kyung-Ho Lee 《Journal of Building Construction and Planning Research》 2013年第1期8-14,共7页
To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 4... To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element. 展开更多
关键词 alkali-activated foamed concrete Granulated Ground BLAST-FURNACE SLAG FLY ASH Water-to-Binder Ratio Environmental Load
下载PDF
Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review
2
作者 Qiang Fu Mengxin Bu +3 位作者 Zhaorui Zhang Wenrui Xu Qiang Yuan Ditao Niu 《Engineering》 SCIE EI CAS CSCD 2023年第1期162-179,共18页
Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO_(2) produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse... Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO_(2) produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse of slag and other wastes and saves resources. Furthermore, the scope of use of slag has been expanded. The progress of the research on the hydration characteristics, microstructure, interfacial transition zone, and pore structure of AASC based on the relevant literatures was analyzed and summarized in this study. The influences of the slag composition, the type and dosage of the alkali activator, and the curing conditions on the hydration characteristics and the microstructure of the AASC were discussed. Relatively few research results on the microstructure of AASC are available, and the relevant conclusions are not completely consistent. Moreover, there are many constraints on the development of AASC (e.g., complex composition of raw materials of slag, large shrinkage deformation, and low fluidity). Therefore, further research is required. 展开更多
关键词 alkali-activated slag concrete Hydration characteristics Pore structure Inter facial transiti on zone Micr ostructure
下载PDF
Mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel 被引量:12
3
作者 Shaosen Ma Weizhong Chen Wusheng Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期159-171,共13页
Foamed concrete has a good energy absorption capability and can be used as seismic isolation material for tunnels. This study aims to investigate the mechanical properties and associated seismic isolation effects of f... Foamed concrete has a good energy absorption capability and can be used as seismic isolation material for tunnels. This study aims to investigate the mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel. For this, a series of uniaxial/triaxial compression tests was conducted to understand the effects of concrete density, confining stress and strain rate on the mechanical properties of foamed concrete. The direct shear tests were also performed to investigate the effects of concrete density and normal stress on the nonlinear behaviors of foamed concrete layer-lining interface. The test results showed that the mechanical properties of foamed concrete are significantly influenced by the concrete density. The foamed concrete also has high volumetric compressibility and strain-rate dependence. The peak stress. residual stress. shear stiffness and residual friction coefficient of the foamed concrete layer-lining interface are influenced by the foamed concrete density and normal stress applied. Then, a crushable foam constitutive model was constructed using ABAQUS software and a composite exponential model was also established to study the relationship between shear stress and shear displacement of the interface, in which their parameters were fitted based on the experimental results. Finally, a parametric analysis using the finite element method(FEM) was conducted to understand the influence of foamed concrete layer properties on the seismic isolation effect, including the density and thickness of the layer as well as the shear stiffness and residual friction coefficient of the interface. It was revealed that lower density and greater thickness in addition to smaller shear stiffness or residual friction coefficient of the foamed concrete layer could yield better seismic isolation effect, and the influences of the first two tend to be more significant. 展开更多
关键词 ROCK TUNNEL foamed concrete SEISMIC ISOLATION LAYER SEISMIC ISOLATION mechanism
下载PDF
Preparation of High Performance Foamed Concrete from Cement,Sand and Mineral Admixtures 被引量:8
4
作者 潘志华 Fujiwara Hiromi Wee Tionghuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期295-298,共4页
The titled high performance foamed concrete was developed from Portland cement, ultra fine granulated blast-furnace slag, pulverized fly ash and condensed silica fume by means of pre-foaming process. The resultant foa... The titled high performance foamed concrete was developed from Portland cement, ultra fine granulated blast-furnace slag, pulverized fly ash and condensed silica fume by means of pre-foaming process. The resultant foamed concrete presents its thermal conductivity of about 0.16-0.75 W/(m·℃) and 28 d compressive strength of about 1.1-23.7 MPa when its mix proportion varies in the range of cement content 280 kg-650 kg/m^3, fly ash 42-97 kg/m^3, slag 64-146 kg/m^3, silica fume 34-78 kg/m^3, and sand 0-920 kg/m^3. The compressive strength of the foamed concrete with oven dried bulk density of 1500 kg/m^3 in appropriate mix proportion and with small amount of superplasticizer reached as high as 44.1 MPa. Meanwhile, the flesh foamed concrete behaves like an excellent flow-ability, therefore, is especially suitable for the application in case of massive foamed concrete casting in situ and in the case of filling casting into large volume underground irregular voids, except for pre-casting of building components like blocks, bricks, and wall panels. 展开更多
关键词 foamed concrete DENSITY compressive strength thermal conductivity
下载PDF
Quantitative Analysis of Relationship Between Pore Structure and Compressive Strength of Foamed Concrete 被引量:2
5
作者 Geng Fei Yin Wanyun +3 位作者 Xie Jianguang Liu Shoucheng Li Haoran Gui Jingneng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第3期556-564,共9页
The effect of dry density,water-cement ratio,the addition of fly ash,and sand content on the porosity and pore distribution of foamed concrete is investigated.Digital microscopy and Image J software are employed to ex... The effect of dry density,water-cement ratio,the addition of fly ash,and sand content on the porosity and pore distribution of foamed concrete is investigated.Digital microscopy and Image J software are employed to examine the landscape of pores with different sizes.Based on the Balshin empirical formula,a mathematical model is established to quantitatively predict the relationship between the pore structures and the compressive strength of foamed concrete.The results well demonstrate that there is a significant correlation between the modified formula and empirical parameters. 展开更多
关键词 foamed concrete POROSITY pore size compressive strength
下载PDF
Lateral compression and energy absorption of foamed concrete-filled polyethylene circular pipe as yielding layer for high geo-stress soft rock tunnels 被引量:1
6
作者 Chaoxuan Zhang Xianjun Tan +1 位作者 Hongming Tian Weizhong Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1087-1096,共10页
Foamed concrete as energy absorption material for high geo-stress soft rock tunnels has been proven to be feasible due to its high compressibility and lightweight.However,the lengthy curing and defoaming problems caus... Foamed concrete as energy absorption material for high geo-stress soft rock tunnels has been proven to be feasible due to its high compressibility and lightweight.However,the lengthy curing and defoaming problems caused by the cast-in-place method of large-volume foamed concrete remain unsolved.In this study,we propose a novel energy absorber composed of foamed concrete-filled polyethylene(FC-PE)pipe and analyze its deformation and energy absorption capacity via quasi-static lateral compression experiments.Results show that FC-PE pipes exhibit typical three-stage deformation characteristics,comprising the elastic stage,the plastic plateau,and the densification stage.Furthermore,the plateau stress,energy absorption,and specific energy absorption of the specimens are 0.81–1.91 MPa,164–533 J,and 1.4–3.6 J/g,respectively.As the density of the foamed concrete increases,the plateau stress and energy absorption increase significantly.Conversely,the length of the plastic plateau and energy absorption efficiency decrease.Moreover,based on the vertical slice method,progressive compression of core material,and the 6 plastic hinges deformation mechanism of the pipe wall,a theoretical calculation method for effective energy absorption is established and achieves good agreement with experimental results,which is beneficial to the optimization of the composite structure. 展开更多
关键词 Soft rock Yielding layer foamed concrete Polyethylene pipe Lateral compression Energy absorption
下载PDF
Study and application of a new type of foamed concrete wall in coal mines 被引量:2
7
作者 Zi-Bo TANG Yong-Liang ZHAO De-Shun KONG Dan KAN 《Journal of Coal Science & Engineering(China)》 2013年第3期345-352,共8页
关键词 泡沫混凝土 冲击载荷作用 发泡混凝土 应用 煤矿 钢筋应力 密闭墙 混凝土墩
下载PDF
In-situ Monitoring the Setting Behavior of Foamed Concrete Using Ultrasonic Pulse Velocity Method
8
作者 SHE Wei ZHANG Yunsheng +1 位作者 JONES MR GUO Panpan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1146-1154,共9页
The applicability of ultrasonic pulse velocity (UPV) method to in-situ monitor setting and hardening process of foamed concrete (FC) was systematically investigated. The UPVs of various FC pastes were automaticall... The applicability of ultrasonic pulse velocity (UPV) method to in-situ monitor setting and hardening process of foamed concrete (FC) was systematically investigated. The UPVs of various FC pastes were automatically and continuously measured by a specially designed ultrasonic monitoring apparatus (UMA). Ultrasonic tests were performed on FC mixtures with different density (300, 500, 800 and 1 000 kg/m3), and different fly ash contents (0%, 20%, 40% and 60%). The influence of curing temperatures (20, 40, 60 and 80~C) was also studied. The experimental results show that three characteristic stages can be clearly identified during the setting process of an arbitrary FC paste: dormant stage, acceleration stage, and deceleration stage. Wet density, fly ash content, and curing temperature have great impact on setting behavior. A stepwise increase of the wet density results in shorter dormant stage and larger final UPV. Hydration reaction rate is obviously promoted with an increase in curing temperature. However, the addition fly ash retards the microstn,lcture formation. To aid in comparing with the ultrasonic results, the consistence spread test and Vicat needle test (VNT) were also conducted. A correlation between ultrasonic and VNT results was also established to evaluate the initial and final setting time of the FC mixtures. Finally, certain ranges of UPV with reasonable widths were suggested for the initial and final setting time, respectively. 展开更多
关键词 foamed concrete (FC) early age setting behavior ultrasonic monitoring setting time CONSISTENCE
下载PDF
Durability of Performance Foamed Concrete Mix Design with Silica Fume for Housing Development 被引量:1
9
作者 Fahrizal Zulkamain Mahyuddin Ramli 《材料科学与工程(中英文版)》 2011年第5期518-527,共10页
关键词 混凝土配合比设计 泡沫性能 普通硅酸盐水泥 硅粉 混凝土抗压强度 耐久性 泡沫混凝土 房屋
下载PDF
Computational Finite Element Modelling of Structural Behaviours of Precast Sandwiched Foamed Concrete Slab
10
作者 Kingsley Ukanwa Noridah Mohamad James B. P. Lim 《Open Journal of Civil Engineering》 2015年第2期220-227,共8页
The structural behaviour of Precast Lightweight Foamed Concrete Panel (PLFP) under flexural load is investigated by using ABAQUS 6.13. The PLFP is made up of two Whyte’s with a polystyrene insulator placed in between... The structural behaviour of Precast Lightweight Foamed Concrete Panel (PLFP) under flexural load is investigated by using ABAQUS 6.13. The PLFP is made up of two Whyte’s with a polystyrene insulator placed in between them using a double shear truss connector of diameter 6mm placed at an angle 45&#176;. The panel is reinforced with both vertical and horizontal steel reinforcement of 9 mm diameter. Four panels with varying dimensions are simulated to investigate their Ultimate Strength and Load-deflection profile. The results show that the length to thickness ratio of the panel is the major contributing factor to the ultimate strength of the PLFP. From the load deflection curve, the panel with the least deflection has the highest thickness which also results in a high ultimate strength recorded at 34.43 KN. 展开更多
关键词 foamed concrete FLEXURAL BEHAVIOUR FINITE ELEMENT ABAQUS
下载PDF
Comparative Study of the Thermal and Mechanical Properties of Foamed Concrete with Local Materials
11
作者 Adelaïde Lareba Ouédraogo Sayouba Kabré +8 位作者 Etienne Malbila Abdoulaye Compaoré Ramatou Saré Paul Ilboudo Sié Kam Bruno Korgo Dieudonné Joseph Bathiebo Florent P. Kieno Philippe Blanchard 《World Journal of Engineering and Technology》 2022年第3期550-564,共15页
Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal dis... Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal discomfort in buildings, we used lightweight concrete such as foamed concrete which is a material that has improved thermal properties for thermal comfort. In addition, this material was compared with local materials used for the construction of buildings such as BTC, adobe and BLT mixed with binders. The results showed that foamed concrete is a material that has good thermal and mechanical properties compared to local materials mixed with binders. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m<sup>3</sup>. It has a thermal resistance of 0.4 m<sup>2</sup>·K/W for a thickness of 20 cm. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m3</sup>. It has a thermal resistance of 0.4 m2</sup>·K/W for a thickness of 20 cm. For sunshine on a daily cycle equal to 12 hours, the characteristic thickness achieved by this material is 7.29 cm. It also has a shallow depth of heat diffusion having a lower thickness than other materials. This shows that foamed concrete is a promising material for the construction of buildings. 展开更多
关键词 foamed concrete Thermo-Mechanical Properties COMPARISON Local Materi-als
下载PDF
Hardening Properties of Foamed Concrete with Circulating Fluidized Bed Boiler Ash, Blast Furnace Slag, and Desulfurization Gypsum as the Binder
12
作者 Seunghyun Na Woonggeol Lee Myongshin Song 《Open Journal of Civil Engineering》 2021年第3期301-316,共16页
Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO<... Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> considered to be a stimulant for blast furnace slag (BFS). This study presents an experimental investigation of the compressive strength and heavy metal ions immobilization properties of cement-free materials comprising CFBA, BFS, and DSG. The feasibility of manufacturing foamed concrete using these materials was examined, and field test of foamed concrete was conducted. Experimentally, the flow, compressive strength, and heavy metal ions concentration were evaluated via inductively coupled plasma atomic emission spectroscopy (ICP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">AES) of the paste and foamed concrete. The experimental investigation revealed the self-healing hardening ability of fluidized bed boiler ash. In addition, the compressive strength was increased with the increasing replacement rates of BFS and DSG in the CFBA paste, and the compressive strength of 14.6</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">17.2 MPa was recorded over 28 days of curing. From the result obtained, the feasibility of manufacturing foamed concrete with a foam volume </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">120 L, incorporating the aforementioned materials, is confirmed. It was also found that after 28 days of age, a 7.9-MPa compressive strength of the foamed concrete was attained, and heavy metal ions elution in this foamed concrete was also significantly reduced. Therefore, CFBA, BFS, and DSG could be used as a binder for the foamed concrete. 展开更多
关键词 Circulating Fluidized Bed Boiler Ash Compressive Strength foamed concrete Heavy Metal Ions Immobilization Field Test
下载PDF
Experimental Investigation on Transmission of Stress Waves in Sandwich Samples Made of Foam Concrete 被引量:4
13
作者 SHEN Jun REN Xinjian 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期139-144,共6页
A series of impact tests of sandwich samples were completed using a large-diameter split Hopkinson pressure bar (SHPB)device at different velocities. The interlayer is made of foam concrete, loess or sand. The stress ... A series of impact tests of sandwich samples were completed using a large-diameter split Hopkinson pressure bar (SHPB)device at different velocities. The interlayer is made of foam concrete, loess or sand. The stress peak value decay, energy decay and waveform dispersion characters are studied by comparing the incident waves with the transmission waves. The tests indicate that the foam concrete has the best capabilities of shock resistance and energy absorption, the loess comes second, and the sand takes third place. 展开更多
关键词 non-metallic inorganic material foam concrete SHPB stress wave energy absorption
下载PDF
Development of a new type of foam concrete and its application on stability analysis of large-span soft rock tunnel 被引量:6
14
作者 王辉 陈卫忠 +2 位作者 谭贤君 田洪铭 曹俊杰 《Journal of Central South University》 SCIE EI CAS 2012年第11期3305-3310,共6页
The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and lo... The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and low ductility was introduced.And it was made as filling material of reserved deformation layer between the first lining and the second lining used in large-span soft rock tunnel.The effect of the new type of foam concrete was simulated as filling material of reserved deformation layer using numerical simulation.Through the comparison with the common large-span soft rock tunnel,the vault settlement and surrounding convergence are reduced by about 61% and 45%,respectively,after creep of 100 a.And in the second lining,the plastic zone reduces apparently and the maximum equivalent plastic strain decreases relatively.So,it can be found that the application of the new type of foam concrete as the filling material of reserved deformation layer can relieve the excessive force in second lining induced by rock creep,reduce its deformation and improve the stability of tunnel. 展开更多
关键词 泡沫混凝土 稳定性分析 软岩隧道 应用程序 大跨度 填充材料 等效塑性应变 蠕变效应
下载PDF
Shale Stone and Fly Ash Landfill Use in Landslide Hazardous Area in Sirnak City with Foam Concrete 被引量:1
15
作者 Yildirim I.Tosun 《Geomaterials》 2014年第4期141-150,共10页
Sirnak City and the surrounding areas are on steeper slopes. There are sliding large land masses or rocks. Underground water and harsh climatic conditions contain high risk hazard areas in urban living site with highe... Sirnak City and the surrounding areas are on steeper slopes. There are sliding large land masses or rocks. Underground water and harsh climatic conditions contain high risk hazard areas in urban living site with higher population density. In order to eliminate landslides and related events, significant precautions should be taken. The mapping of landslide risk may ease to take precautions. Even the application of landfill rock may reduce water content of soil. In this research, fly ash and Mine Waste shale stone were used with low density foam concrete. Waste mixture at certain proportions decreased cement use. Shale stone as fine aggregate instead of fly ash in specific proportions improved mechanical strength and porosity. Hence landslide hazardous area could be safer for urban living. 展开更多
关键词 foam concrete LANDSLIDE Stability Lightweight Aggregate
下载PDF
Analysis of the Influence of Type, Amount and Way of Introduction of Anti-foaming Admixture (AFA) on the Properties of Self-compacting Concrete (SCC) Mix
16
作者 Beata Lazniewska-Piekarczyk 《Journal of Civil Engineering and Architecture》 2010年第1期1-10,共10页
关键词 自密实混凝土 混合属性 SCC AFA 类型 高效减水剂 流动时间 杂质
下载PDF
PE纤维与细橡胶颗粒对泡沫混凝土弯曲韧性的影响
17
作者 吴昊 龙广成 +2 位作者 杨恺 曾晓辉 唐卓 《建筑材料学报》 EI CAS CSCD 北大核心 2024年第3期206-214,共9页
研究了聚乙烯(PE)纤维及其与细橡胶颗粒复掺对泡沫混凝土弯曲破坏模式、峰值强度、能量吸收特性和弯曲韧性的影响,并结合孔结构分析和微观形貌观察探究了其作用机理.结果表明:PE纤维使泡沫混凝土出现多缝开裂模式,显著提升了其峰值强度... 研究了聚乙烯(PE)纤维及其与细橡胶颗粒复掺对泡沫混凝土弯曲破坏模式、峰值强度、能量吸收特性和弯曲韧性的影响,并结合孔结构分析和微观形貌观察探究了其作用机理.结果表明:PE纤维使泡沫混凝土出现多缝开裂模式,显著提升了其峰值强度、能量吸收能力和弯曲韧性;复掺细橡胶颗粒可以进一步提升泡沫混凝土试件的比能量吸收和弯曲韧性;掺入PE纤维可以降低泡沫混凝土的平均孔径;复掺细橡胶颗粒导致泡沫混凝土试件的平均孔径增大,联通孔增多,对其峰值强度有不利影响;PE纤维及细橡胶颗粒提升泡沫混凝土弯曲韧性的主要原因在于其削弱了裂纹尖端的应力集中,同时增强了能量耗散作用. 展开更多
关键词 泡沫混凝土 PE纤维 细橡胶颗粒 弯曲韧性 机理
下载PDF
隧道减震层聚丙烯泡沫混凝土力学性能分析
18
作者 路军富 肖钦文 +1 位作者 谭进义 陈龙 《混凝土》 CAS 北大核心 2024年第2期24-29,共6页
隧道减震层为提升高烈度地震区隧道抗震性能的重要措施,减震层的材料性能是影响隧道减震效果重要因素。为探究一种适合隧道减震层的聚丙烯泡沫混凝土,并对其制备工艺及力学吸能特性进行分析。基于聚丙烯泡沫体积含量指标,采用代石法配... 隧道减震层为提升高烈度地震区隧道抗震性能的重要措施,减震层的材料性能是影响隧道减震效果重要因素。为探究一种适合隧道减震层的聚丙烯泡沫混凝土,并对其制备工艺及力学吸能特性进行分析。基于聚丙烯泡沫体积含量指标,采用代石法配制了多种体积含量的聚丙烯泡沫混凝土,通过试验探明了表观密度、抗压强度、弹性模量、泊松比、静动态吸能特性等随聚丙烯泡沫体积含量的变化规律。研究成果表明:(1)当发泡聚丙烯(EPP)体积含量从0增加至28%时,表观密度为2331~1451 kg/m3,抗压强度为54.5~11.2 MPa,抗拉强度为3.6~1.6 MPa,弹性模量为34.0~16.0 GPa,泊松比为0.19~0.28,建立了物理力学性能与EPP体积含量关系表达式;(2)随着EPP体积含量的增加,混凝土静态吸能呈现先增大再减小后增大的趋势,当EPP体积含量为11%时,静态吸能效果最好;(3)随着EPP体积含量的增加,混凝土动态吸能呈现逐渐增大的趋势,当EPP体积含量为28%时,动态冲击吸能效果最好。研究成果可为聚丙烯泡沫混凝土作为减震吸能材料应用提供理论依据。 展开更多
关键词 隧道减震层 聚丙烯泡沫混凝土 物理力学性能 吸能特性
下载PDF
聚酯纤维泡沫混凝土力学性能及孔结构研究
19
作者 王述红 贡藩 +1 位作者 尹宏 修占国 《材料导报》 EI CSCD 北大核心 2024年第1期105-112,共8页
纤维的掺加可有效地改善泡沫混凝土抗压强度低、脆性特征显著的缺陷,增强其工程适用性。本工作针对聚酯纤维对泡沫混凝土力学性能的改善开展试验研究,选定密度等级为700 kg/m3的泡沫混凝土,考虑不同纤维体积掺量(0.1%、0.2%、0.3%和0.4%... 纤维的掺加可有效地改善泡沫混凝土抗压强度低、脆性特征显著的缺陷,增强其工程适用性。本工作针对聚酯纤维对泡沫混凝土力学性能的改善开展试验研究,选定密度等级为700 kg/m3的泡沫混凝土,考虑不同纤维体积掺量(0.1%、0.2%、0.3%和0.4%)对其抗压强度、抗折强度、劈裂抗拉强度以及延性的影响。结果表明:纤维掺量为0.1%时,材料表现出较优的抗压和劈裂抗拉性能,28 d强度分别增加了86.4%和91.3%;纤维掺量为0.2%时,材料表现出较优的抗折性能,28 d抗折强度提升了39.1%。试样破坏形态和应力-应变曲线表明,聚酯纤维可有效地提升泡沫混凝土的延性。最后,运用图像分析处理法分别获得了五组试件的孔结构参数,从细观孔结构的角度讨论了聚酯纤维对泡沫混凝土抗压强度的影响机理。 展开更多
关键词 泡沫混凝土 聚酯纤维 力学性能 孔结构 图像处理
下载PDF
稻草纤维增强泡沫混凝土物理力学性能试验研究
20
作者 王秀丽 潘旭宾 吴征 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第3期189-197,共9页
为了研究稻草纤维增强泡沫混凝土的性能,以普通硅酸盐水泥为主要胶凝材料,硅灰、偏高岭土和粉煤灰为辅助胶凝材料,稻草纤维为增强材料,采用物理发泡法制备纤维增强泡沫混凝土;通过全因子试验,研究在不同水胶比和发泡剂掺量下,稻草纤维... 为了研究稻草纤维增强泡沫混凝土的性能,以普通硅酸盐水泥为主要胶凝材料,硅灰、偏高岭土和粉煤灰为辅助胶凝材料,稻草纤维为增强材料,采用物理发泡法制备纤维增强泡沫混凝土;通过全因子试验,研究在不同水胶比和发泡剂掺量下,稻草纤维掺量对泡沫混凝土的密度、吸水率、抗压强度、抗折强度、劈裂抗拉强度和抗冻性能的影响。结果表明:对于不同水胶比和发泡剂掺量,泡沫混凝土的密度、抗压强度和劈裂抗拉强度均随纤维掺量的增加呈现出先增加后降低的变化规律;抗压强度随密度增加呈幂函数增加关系;劈裂抗拉强度随抗压强度的增加呈指数函数增加关系;当水胶比为0.45时,抗折强度随纤维掺量的增加先增加后降低,当水胶比为0.50时,抗折强度随纤维掺量的增加而增加;纤维的掺入增大了泡沫混凝土的泡孔尺寸和吸水率,降低了其抗冻性能。 展开更多
关键词 稻草纤维 泡沫混凝土 泡孔尺寸 力学性能 抗冻性能
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部