期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Co9S8 Nanotubes as an Efficient Catalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte
1
作者 Lihuang Jin Cuncai Lv +3 位作者 Jie Wang Han Xia Yaoxing Zhao Zhipeng Huang 《American Journal of Analytical Chemistry》 2016年第2期210-218,共9页
Cobalt sulfide (Co<sub>9</sub>S<sub>8</sub>) nanotubes were found to be an electrocatalyst for the hydrogen evolution reaction under alkaline condition. An electrode comprising of Co<sub>... Cobalt sulfide (Co<sub>9</sub>S<sub>8</sub>) nanotubes were found to be an electrocatalyst for the hydrogen evolution reaction under alkaline condition. An electrode comprising of Co<sub>9</sub>S<sub>8</sub> nanotubes on a glass carbon electrode (GCE) (mass loading: 0.855 mg·cm<sup>-2</sup>) produced a cathodic current density of 20 mA·cm<sup>-2</sup> at an overpotential of 320 mV. The Co<sub>9</sub>S<sub>8</sub>/GCE electrode was stable over 20,000 s during potentiostatic electrolysis. Minor degradation of reduction current after 4000 cyclic voltammetric sweeps suggests the long-term viability under operating conditions. The faradaic efficiency of Co<sub>9</sub>S<sub>8</sub> nanotubes is nearly 100% during the electrolysis of water. 展开更多
关键词 Cobalt Sulfide Nanotubes ELECTROCATALYST Hydrogen Evolution Reaction alkaline electrolyte
下载PDF
N,S-Doped Carbon Dots as Additive for Suppression of Zinc Dendrites in Alkaline Electrolyte
2
作者 Shan Cai Ge Chang +5 位作者 Jiugang Hu Jiae Wu Yuqing Luo Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第14期1697-1704,共8页
The severe dendrite growth on zinc anode in alkaline electrolyte brings great challenge to the development of zinc-based batteries.It is a simple and effective strategy to inhibit zinc dendrite formation by introducin... The severe dendrite growth on zinc anode in alkaline electrolyte brings great challenge to the development of zinc-based batteries.It is a simple and effective strategy to inhibit zinc dendrite formation by introducing additives into the electrolyte.In this study,N,S-doped carbon dots(TU-CQDs)were synthesized and used as additives to regulate zinc deposition in a typical KOH electrolyte.The experimental and three-dimensional transient nucleation model disclosed that the special functional groups of carbon dots can change the electrode surface state and the coordination behaviors of zinc species in the electrolyte.Therefore,TU-CQDs can not only inhibit the hydrogen evolution reaction,but also achieve uniform zinc deposition.The in-situ synchrotron radiation X-ray imaging elucidated that TU-CQDs can effectively inhibit the dendrite growth and improve the reversibility of zinc plating/stripping process.This work provides a feasible route for regulating the reversibility of zinc metal anode in alkaline electrolyte. 展开更多
关键词 Zinc anode Carbon dots alkaline electrolyte Dendrite-free Electrode interfacesI electrolyte additives
原文传递
Recent advances in alkaline hydrogen oxidation reaction 被引量:3
3
作者 Lixin Su Dan Gong +2 位作者 Yiming Jin Dean Wu Wei Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期107-122,I0004,共17页
The development of highly efficient electrocatalysts toward hydrogen oxidation reaction(HOR)under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cells(AEMFCs).However,the HOR ... The development of highly efficient electrocatalysts toward hydrogen oxidation reaction(HOR)under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cells(AEMFCs).However,the HOR kinetics in alkaline is two to three orders of magnitude slower than that in acid.More critically,fundamental understanding of the sluggish kinetics derived from the p H effect is still debatable.In this review,the recent development of understanding HOR mechanism and rational design of advanced HOR electrocatalysts are summarized.First,recent advances in the theories focusing on fundamental understandings of HOR under alkaline electrolyte are comprehensively discussed.Then,from the aspect of intermediates binding energy,optimizing hydrogen binding energy(HBE)and increasing hydroxyl binding energy(OHBE),the strategies for designing efficient alkaline HOR catalysts are summarized.At last,perspectives for the future research on alkaline HOR are pointed out. 展开更多
关键词 Hydrogen oxidation reaction Hydrogen evolution reaction alkaline electrolyte AEMFC Binding energy
下载PDF
Improved hydrogen oxidation reaction under alkaline conditions by Au–Pt alloy nanoparticles 被引量:2
4
作者 Lijuan Lu Lishan Peng +3 位作者 Li Li Jing Li Xun Huang Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期52-56,I0003,共6页
This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation o... This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation of Au,the alloyed Au1Pt1/C nanoparticles exhibit superior HOR activity than commercial PtRu/C.On the contrary,the catalytic performance of the phase-segregated Au2Pt1/C and Au1Pt1/C bimetallic nanoparticles in HOR is significantly worse.Moreover,Au1Pt1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles,while performance attenuation of commercial PtRu/C is high up to 15% under the same condition.Our results indicate that the alloyed Au1Pt1/C is a promising candidate to substitute commercial PtRu/C for hydrogen oxidation reaction in alkaline electrolyte. 展开更多
关键词 Hydrogen oxidation reaction Pt-Au alloy NANOPARTICLES alkaline electrolyte
下载PDF
Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction 被引量:3
5
作者 Fatma Abdelghafar Xiaomin Xu +1 位作者 Ping Jiang Zongping Shao 《Materials Reports(Energy)》 2022年第3期38-49,共12页
Electrochemical water splitting powered by renewables-generated electricity represents a promising approach for green hydrogen production.However,the sluggish kinetics for the hydrogen evolution reaction(HER)under an ... Electrochemical water splitting powered by renewables-generated electricity represents a promising approach for green hydrogen production.However,the sluggish kinetics for the hydrogen evolution reaction(HER)under an alkaline medium causes a massive amount of energy losses,hindering large-scale production.Exploring efficient and low-cost catalyst candidates for large-scale H_(2) generation becomes a crucial demand.Single-atom catalysts(SACs)demonstrate great promise for enabling efficient alkaline HER catalysis at maximum atom utilization efficiency.In this review,we provide a comprehensive overview of the recent progress in SACs for the HER application in alkaline environments.The fundamentals of alkaline HER are first introduced,followed by a justification of the need to develop SACs.The rational design of the SACs including the inherent element property,coordination environment,SAC morphology,and SAC mass loading are highlighted.To facilitate the development of SACs for alkaline HER,we further propose the remaining challenges and perspectives in this research field. 展开更多
关键词 Single-atom catalyst Hydrogen evolution reaction ELECTROCATALYSIS alkaline electrolyte Water splitting
下载PDF
Controlled Growth of NiMoO_(4) Nano-rods on Carbon Cloth:A Novel Electrode for the Hydrogen Evolution Reaction in Alkaline Media and Simulated Sea Water
6
作者 Jiang Bolong Shi Shunjie +1 位作者 Cui Yanyan Jiang Nan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第2期91-100,共10页
A series of NiMoO_(4)-nano rod/carbon cloth composite electrodes with different loadings(x)of NiMoO_(4)-NRs was synthesized with a view to implementing an efficient hydrogen evolution reaction(HER).The NiMoO_(4) nano-... A series of NiMoO_(4)-nano rod/carbon cloth composite electrodes with different loadings(x)of NiMoO_(4)-NRs was synthesized with a view to implementing an efficient hydrogen evolution reaction(HER).The NiMoO_(4) nano-rods(NRs)were prepared by growing them directly on carbon cloth(CC)via a simple hydrothermal reaction coupled with an annealing treatment.The resulting NiMoO_(4)-NR/CC-x composites served directly as electrodes for electrolysis of an alkaline medium and a simulated sea water.The results indicated that among the NiMoO_(4)-NR/CC-x composites,the NiMoO_(4)-NR/CC-10 composite possessed the highest HER activity with an overpotential of 244.8 mV at 10 mA/cm^(2),a Tafel slope of 95 mV/dec,the fastest charge transfer rate(R_(ct)<1Ω)and good stability in alkaline media.Even in simulated seawater,the NiMoO_(4)-NR/CC-10 composite showed good stability.The outstanding HER activity and stability may originate from the strong interaction between Ni and Mo in the NiMoO_(4) NRs as well as the efficient charge transfer process and the rate of the HER due to the synergistic effect involving the CC and NiMoO_(4) NRs. 展开更多
关键词 Hydrogen evolution reaction CATALYST NiMoO_(4)nano-rods carbon cloth alkaline electrolyte simulated seawater
下载PDF
Stretchable alkaline quasi-solid-state electrolytes created by super-tough, fatigue-resistant and alkali-resistant multi-bond network hydrogels
7
作者 Hao Xu Yujun Liu Xu-Ming Xie 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第4期275-278,共4页
Hydrogel-based quasi-solid-state electrolytes(Q-SSEs) swollen with electrolyte solutions are important components in stretchable supercapacitors and other wearable devices. This work fabricates a supertough, fatigue-r... Hydrogel-based quasi-solid-state electrolytes(Q-SSEs) swollen with electrolyte solutions are important components in stretchable supercapacitors and other wearable devices. This work fabricates a supertough, fatigue-resistant, and alkali-resistant multi-bond network(MBN) hydrogel aiming to be an alkaline Q-SSE. To synthesize the hydrogel, a 2-ureido-4[1H]-pyrimidone(UPy) motif is introduced into a poly(acrylic acid) polymer chain. The obtained MBN hydrogels with 75 wt% water content exhibit tensile strength as high as 2.47 MPa, which is enabled by the large energy dissipation ability originated from the dissociation of UPy dimers due to their high bond association energy. Owing to the high dimerization constant of UPy motifs, the dissociated UPy motifs are able to partially re-associate soon after being released from external forces, resulting in excellent fatigue-resistance. More importantly, the MBN hydrogels exhibit excellent alkali-resistance ability. The UPy Gel-10 swollen with 1 mol/L KOH display a tensile strength as high as ~1.0 MPa with elongation at break of ~550%. At the same time, they show ionic conductivity of ~17 m S/cm, which do not decline even when the hydrogels are stretched to 500% strain.The excellent mechanical property and ionic conductivity of the present hydrogels demonstrate potential application as a stretchable alkaline Q-SSE. 展开更多
关键词 alkaline quasi-solid-state electrolyte Super-tough hydrogel Fatigue resistance Alkali resistance Multi-bond network
原文传递
Highly efficient Fe/N/C catalyst using adenosine as C/N-source for APEFC
8
作者 Huan Ren Ying Wang +3 位作者 Xun Tang Juntao Lu Li Xiao Lin Zhuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期616-621,共6页
An environmentally friendly precursor, adenosine, has been used as a dual source of C and N to synthesize nitrogen-doped carbon catalyst with/without Fe. A hydrothermal carbonization method has been used and water is ... An environmentally friendly precursor, adenosine, has been used as a dual source of C and N to synthesize nitrogen-doped carbon catalyst with/without Fe. A hydrothermal carbonization method has been used and water is the carbonization media. The morphology of samples with/without Fe component has been compared by HRTEM, and the result shows that Fe can promote the graphitization of carbon. Further electro-chemical test shows that the oxygen reduction reaction(ORR) catalytic activity of Fe-containing sample(C–Fe N) is much higher than that of the Fe-free sample(C–N). Additionally, the intermediates of C–Fe N formed during each synthetic procedure have been thoroughly characterized by multiple methods,and the function of each procedure has been discussed. The C–Fe N sample exhibits high electro-catalytic stability and superior electro-catalytic activity toward ORR in alkaline media, with its half-wave potential 20 mV lower than that of commercial Pt/C(40 wt%). It is further incorporated into alkaline polymer electrolyte fuel cell(APEFC) as the cathode material and led to a power density of 100 m W/cm;. 展开更多
关键词 N-doped carbon catalyst ORR Fuel cell alkaline polymer electrolyte Fe/N/C
下载PDF
Effects of Hybrid Voltages on Oxide Formation on 6061 Al-alloys During Plasma Electrolytic Oxidation 被引量:2
9
作者 Kai Wang Bon Heun Koo +3 位作者 Chan Gyu Lee Young Joo Kim Sunghun Lee Eungsun Byon 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第5期564-568,共5页
Plasma electrolytic oxidation (PEO) is carried out on 6061 Al-alloys in a weak alkaline electrolyte containing NaOH, Na2SiO3 and NaCl. Centered on the correlation of composition and structure, analyses by means of X... Plasma electrolytic oxidation (PEO) is carried out on 6061 Al-alloys in a weak alkaline electrolyte containing NaOH, Na2SiO3 and NaCl. Centered on the correlation of composition and structure, analyses by means of X-ray diffration (XRD), scanning electron microscope (SEM) and energy dispersive spectrometry (EDS) are conducted on the specimens, which have been PEO-treated under hybrid voltages of different direct current (DC) values (140-280 V) with constant alternate current (AC) amplitude (200 V). Attention is paid to the composition, properties and growth mechanism of oxide layers formed with hybrid voltages. Moreover, the main effects of DC value are discussed. Ceramic layers with a double-layer structure which combines hard outer and soft inner layers are found to be consist of α-Al2O3,γ-Al2O3 and mullite. With the DC values increasing, the growth of the ceramic layers tends to have increasingly obvious three-stage feature. 展开更多
关键词 plasma electrolytic oxidation oxide layer aluminum alloys alkaline electrolyte hybrid voltages
原文传递
Improving the Catalytic Efficiency of NiFe-LDH/ATO by Air Plasma Treatment for Oxygen Evolution Reaction
10
作者 LEI Chong LI Wenzheng +3 位作者 WANG Gongwei ZHUANG Lin LU Juntao XIAO Li 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2021年第2期293-297,共5页
Developing efficient catalysts toward the oxygen evolution reaction(OER)is important for water splitting and rechargeable metal-air batteries.Although NiFe oxides are considered as potentially applicable catalysts in ... Developing efficient catalysts toward the oxygen evolution reaction(OER)is important for water splitting and rechargeable metal-air batteries.Although NiFe oxides are considered as potentially applicable catalysts in the alkaline media,there are still a limited numbers of researches working on membrane electrode assembly(MEA)fed with pure water due to their poor electrical conductivity.In this work,antimony doped tin oxide(ATO)has been employed as conductive supports where NiFe layered double hydroxide uniformly dispersed[named NiFe-LDH(layered double hydroxide)/ATO].The catalysts have been synthesized by a one-step co-precipitation method,and then NiFe-LDH/ATO-air plasma was obtained through mild air plasma treatment.According to XPS analysis,binding energies of Ni2p and Fe2p were shifted negatively.Moreover,a new signal of low oxygen coordination appeared on O1s spectrum after air plasma treatment.These XPS results indicated that oxygen vacancies(Ov)were generated after air plasma treatment.Electrochemical measurement indicated that the vacancy-rich NiFe-LDH/ATO-air plasma exhibited better performance than NiFe-LDH/ATO not only in 1 mol/L KOH solutions but also in an alkaline polymer electrolyte water electrolyzer(APEWE)fed with deionized water.This work provides a feasible way to design practical catalysts used in electrochemical energy conversion systems by choosing corrosion resistance supports and defect engineering. 展开更多
关键词 Antimony doped tin oxide(ATO) Air plasma Oxygen vacancy alkaline polymer electrolyte water electrolyzer(APEWE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部