The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid developme...The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid development of information and communication technology[2].展开更多
In the September 2022 issue of the Journal of Sport and Health Science,Ayala et al.1 published results from a cross-sectional study where they tested the hypothesis that light intensity physical activity(LIPA,1.6-2.9 ...In the September 2022 issue of the Journal of Sport and Health Science,Ayala et al.1 published results from a cross-sectional study where they tested the hypothesis that light intensity physical activity(LIPA,1.6-2.9 metabolic equivalents(METs))moderates the relationship between sitting time and adiposity in 219 Australian adolescents aged 14±1.6 years(mean±SD).展开更多
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal...To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.展开更多
Development of urban human settlement environments(HSEs)is an integral part of promoting high-quality and sustainable regional development and constructing a beautiful China.The city of Lanzhou,located at the geometri...Development of urban human settlement environments(HSEs)is an integral part of promoting high-quality and sustainable regional development and constructing a beautiful China.The city of Lanzhou,located at the geometric center of China,is the only provincial capital traversed by the Yellow River.Given the constraints posed by the valley topography and the need for economic development,the development of this HSE,which is located within an arid region,poses considerable challenges.Evidently,an understanding of the evolution of HSEs and drivers of changes in them contributes to high-quality,sustainable urban development in arid and semi-arid regions.An analytical model was developed using the parameters of relief degree of land surface,human comfort days,the land cover index,nighttime light index,and precipitation.This model was used in combination with population density and the gross domestic product to analyze the spatial distribution of Lanzhou's HSE and its drivers.The results showed that landscapes in Lanzhou underwent significant changes between 2000 and 2022,with an increase in building-up land(+0.946%),cultivated land(+0.134%),and forest land(+0.018%)and a decrease in grassland(-1.10%).There was significant outward expansion of the main urban zone of Lanzhou and of various county towns,with the increase in building-up land being most prominent.During this period,there were significant changes in the periphery of the core urban area and county towns in Lanzhou,with decreases moving from the urban center(the highest value)to the surrounding areas(Yongdeng County had the lowest value).The correlation between the HSE and population density grew stronger in Anning and Chengguan Districts but became weaker in Xigu and Qilihe Districts.Spatiotemporal variations in the HSE were primarily caused by climate change,followed by human activities,and were also influenced by the valley topography.Overall,the spatial distribution of population density and the HSE in Lanzhou demonstrated good consistency under the in-fluence of economic development and urbanization.展开更多
The Zhongjiang gas field is a typical large gas field in terrigenous strata of the Western Sichuan Depression.It remains debatable which member of the Upper Triassic Xujiahe Formation served as the source rocks and ho...The Zhongjiang gas field is a typical large gas field in terrigenous strata of the Western Sichuan Depression.It remains debatable which member of the Upper Triassic Xujiahe Formation served as the source rocks and how significant the member contributed to the gas accumulations in the Zhongjiang gas field.In this study,we analyzed the essential characteristics of the Lower Jurassic source rocks and the geochemical features of light hydrocarbons in natural gas from the 2nd(T_(3)χ^(2))and 4th members(T_(3)χ^(4))of the Upper Triassic Xujiahe Formation(T_(3)χ),as well as the Middle Jurassic Shaximiao(J_(2)s)and Qianfoya(J_(2)q)formations.Based on this,we explored the sources of the natural gas in the Zhongjiang gas field and determined the natural gas migration patterns and their effects on the properties of light hydrocarbons in the natural gas.The results indicate that the Lower Jurassic lacustrine source rocks of the Zhongjiang gas field contain humic organic matter,with vitrinite reflectance(R_(0))values ranging from 0.86%to 0.98%.Samples meeting the criterion for effective source rocks[total organic carbon(TOC)content≥0.75%]exhibited an average TOC content of merely 1.02%,suggesting significantly lower hydrocarbon generation potential than source rocks in the underlying T3x,which show higher thermal maturity and TOC contents.For natural gas samples from T_(3)χ^(2),T_(3)χ^(4),J_(2)s,and J_(2)q reservoirs,their C_(5-7)iso-alkane content was significantly higher than their n-alkane content,and their methylcyclohexane(MCH)index ranged from 59.0%to 77.3%,indicating the predominance of methylcyclohexane in C_(7)light hydrocarbons.As indicated by the origin identification and gas-source correlation based on the geochemical features of light hydrocarbons,the natural gas in the Zhongjiang gas field is typical coal-derived gas.The gas from the primary pay zone of the Shaximiao Formation,with significantly high K_(1),(P_(2)+N_(2))/C_(7),and P_(3)/C_(7)values,predominantly originated from the 5th member of the T3x and migrated in the free phase,with a small amount possibly sourced from the Lower Jurassic source rocks.The dissolution and adsorption during gas migration led to a decrease in the aromatic content in C_(6-7)light hydrocarbons and an increase in the isoheptane values.Therefore,their effects must be considered when determining the gas origin and thermal maturity based on the aromatic content in C_(6-7) light hydrocarbons and iso-heptane values.展开更多
Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providi...Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providing access to electrical wiring for installation and maintenance. While essential for functionality, these handholes introduce a vulnerability to the overall structure, making them a potential failure point. Although prior research and analyses on aluminum light poles have been conducted, the behavior of smaller diameter poles containing handholes remains unexplored. Recognizing this need, a research team at the University of Akron undertook a comprehensive experimental program involving aluminum light poles with handholes containing welded inserts in order to gain a better understanding of their fatigue life, mechanical behavior, and failure mechanisms. The research involved testing seven large-scale aluminum light poles each 8-inch diameter, with two separate handholes. These handholes included a reinforcement that was welded to the poles. Finite Element Analysis (FEA), statistical analysis, and comparison analysis with their large counterparts (10-inch diameter) were used to augment the experimental results. The results revealed two distinct failure modes: progressive crack propagation leading to ultimate failure, and rupture of the pole near the weld initiation/termination site around the handhole. The comparison analysis indicated that the 8-inch diameter specimens exhibited an average fatigue life exceeding that of their 10-inch counterparts by an average of 30.7%. The experimental results were plotted alongside the fatigue detail classifications outlined in the Aluminum Design Manual (ADM), enhancing understanding of the fatigue detail category of the respective poles/handholes.展开更多
With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Es...With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Especially in modern large-scale buildings with high levels of industrialization,lighting systems should also be optimized accordingly.This article explores the application path of intelligent lighting in thermal power plants for reference.展开更多
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wav...The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.展开更多
The developments in the field of construction raise the need for concrete with less weight. This is beneficial for different applications starting from the less load applied to foundations and soil till the reduction ...The developments in the field of construction raise the need for concrete with less weight. This is beneficial for different applications starting from the less load applied to foundations and soil till the reduction of carnage capacity required for lifting precast units. In this paper, the production of light weight concrete from light local weight aggregate is investigated. Three candidate materials are used: crushed fired brick, vermiculite and light exfoliated clay aggregate (LECA). The first is available as the by-product of brick industry and the later two types are produced locally for different applications. Nine concrete mixes were made with same proportions and different aggregate materials. Physical and mechanical properties were measured for concrete in fresh and hardened states. Among these measured ones are unit weight, slump, compressive and tensile strength, and impact resistance. Also, the performance under elevated temperature was measured. Results show that reduction of unit weight up to 45%, of traditional concrete, can be achieved with 50% reduction in compressive strength. This makes it possible to get structural light weight concrete with compressive strength of 130 kg/cm2. Light weight concrete proved also to be more impact and fire resistant. However, as expected, it needs separate calibration curves for non-destructive evaluation. Following this experimental effort, the Artificial Neural Network (ANN) technique was applied for simulating and predicting the physical and mechanical properties of light weight aggregate concrete in fresh and hardened states. The current paper introduced the (ANN) technique to investigate the effect of light local weight aggregate on the performance of the produced light weight concrete. The results of this study showed that the ANN method with less effort was very efficiently capable of simulating the effect of different aggregate materials on the performance of light weight concrete.展开更多
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the...The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.展开更多
The effect of weak light on the peroxidation of membrane_lipid of one_year_old cherries ( Prunus pseudocerasus L. 'Laiyang') was studied by whole_tree shading. The results showed that the net photosynthetic...The effect of weak light on the peroxidation of membrane_lipid of one_year_old cherries ( Prunus pseudocerasus L. 'Laiyang') was studied by whole_tree shading. The results showed that the net photosynthetic rate of cherry leaves under weak light was remarkably lower; the activity peroxidase (POD) increased when light intensity decreased; the activity of catalase (CAT) showed an opposite trend, and it was positively correlated with light intensity; the activity of superoxide dismutase (SOD) increased under 366 μmol·m -2 ·s -1 and 533.8 μmol·m -2 ·s -1 light intensity, but decreased under 228.8 μmol·m -2 ·s -1 and 83.9 μmol·m -2 ·s -1 light intensity. A remarkable increase of malondialdehyde (MDA), a product of membrane_lipid peroxidation, was also observed in cherry leaves when treated with weak light, indicating more serious peroxidation in the membrane.展开更多
Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural charact...Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural characteristics of phloem tissues of source leaves were observed and compared in normal and weak light intensities using the transmission electron microscopy. Results showed that the average diameters of companion cells (CC) and sieve elements (SE) of all kinds of veins were bigger in normal than that in weak light intensity, indicating that light could influence the cell development and growth. Dense cytoplasm with abundant mitochondria, endoplasmic reticulums, multivesicular bodies, vesicles and plastids were observed in normal light intensity. On the contrary, CC with small vacuolar structures and few mitochondrias, endoplasmic reticulums were shown in weak light. Misalignment of grana thylakoid margins of nectarine leaves also was seen in weak light. The sieve pores of SEs were obstructed in weak light. Chloroplasts with numerous starch grains and few mitochondrias were noticed in the mesophyll cell (MES) surrounding the bundle sheath in weak light. The storage of starch grains appeared to result from an unbalance between photosynthate production and export of photosynthates. This observation provided a strong support to the point that most leaves export the most of assimilates in the light time. Plasmodesmal densities between SE/CC, CC/PP (phloem parenchyma cell), PP/PP and PP/BSC (bundle_sheath cell) decreased in weak light. Plasmodesmata were observed between CC/SE (NS) (nacreous_walled sieve element), PP/BSC in branch veins in normal light intensity, but not in weak light. Thus apoplasmic pathway may be the main mode of transport of assimilates in weak light, however symplasmic pathway may be the main mode of transport of assimilates in normal light intensity. These results demonstrated that the solar greenhouse nectarine trees could be adapted to the weak light via the ultrastructure variation of phloem tissues of the source leaves.展开更多
This paper presents a method of measuring the particle mean size and dust concentration by small angle near forward light scattering optics and the extinction theory. Its theory is based on Fraunhofer diffraction the...This paper presents a method of measuring the particle mean size and dust concentration by small angle near forward light scattering optics and the extinction theory. Its theory is based on Fraunhofer diffraction theory which is the approximation of Mie scattering within the forward Fraunhofer diffraction lobe, and Rosin Rammler function is introduced to describe the particle size distribution in two phase flow in advance. Compared with the values by the sample weight method, the measurement results have a reasonable agreement. The present work has demonstrated that this method will be probably used to monitor the parameters of two phase flow.展开更多
The commentary on A Clean, well-lighted Place intends to release general introduction about Hemingway's short story, especially his writing styles through a few short conversations between the young and middle-age...The commentary on A Clean, well-lighted Place intends to release general introduction about Hemingway's short story, especially his writing styles through a few short conversations between the young and middle-aged waiters to evince the value of life in simple words by Hemingway.展开更多
This thesis is to analyze Hemingway's 'A Clean,Well-lighted Place'-a story to which the author applies his famous 'iceberg theory'.Hemingway relates his stories to an iceberg with only one-eighth a...This thesis is to analyze Hemingway's 'A Clean,Well-lighted Place'-a story to which the author applies his famous 'iceberg theory'.Hemingway relates his stories to an iceberg with only one-eighth actually showing and the other seven-eighths under water.This thesis is to show what is beneath the surface and the hidden meaning of the story.展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst s...A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.展开更多
Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant gen...Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant genotype) and 20078 (low light-sensitive genotype), were used to study the effects of low light (photosynthetic photon flux density, PPFD was 75- 100 umol m-2 s-1, control 450-500 umol m-2 s-1) on photosynthesis during leaf development. The result indicated that under low light chlorophyll content, net photosynthetic rate (PN), photosynthetic apparent quantum efficiency (Фi) and carboxylation efficiency (CE) of sweet pepper leaves increased gradually and decreased after reaching the maximum levels. The time to reach the peak values for all the above parameters was delayed, whereas the light compensation point (LCP) decreased gradually along with leaf expansion. The decrease in maximum quantum yield of PS II (Fv/Fm) was not observed at any stages of the leaf development under low light condition, but the actual PS II efficiency under irradiance (ФPS II) was lower accompanied by an increased non-photochemical quenching (NPQ) in young and/or old leaves compared with mature leaves. The antenna thermal dissipation (D) was a main way of heat dissipation when young leaves received excessive light energy, while the decline in photosynthetic function in senescence leaf was mostly owing to the decrease in carbon assimilation capacity, followed by a significantly increased allocation of excessive energy (Ex). Compared with 20078, ShY could maintain higher PN, ФPS II and lower QA reduction state for a longer time during leaf development. Thus, in ShY photosynthetic efficiency and the activity of electron transport of PS II were not significantly affected due to low light stress.展开更多
As one of the three major five-leaved pines in the northern hemisphere, Pinus koraiensis is the most important dominant tree species in the natural mixed-broadleaved Korean pine forests. However, the regeneration of P...As one of the three major five-leaved pines in the northern hemisphere, Pinus koraiensis is the most important dominant tree species in the natural mixed-broadleaved Korean pine forests. However, the regeneration of P koraiensis under the canopy of secondary forest stands is poor because of the light limitation. This study was conducted to understand how P koraiensis seedlings adapt to different light intensities and what would be the optimum light level for their establishment and growth. Three repetition plots with four light intensities (15%, 30%, 60% and 100% of the natural incident irradiances, achieved by suspending layers of black nylon net above and surrounding the plots) were set up under natural climate conditions in a montane region in eastern Liaoning Province, Northeast China. A total of 80 P koraiensis seedlings with similar height and root collar diameter were transplanted into four plots. After one year of acclimation to the specific light conditions, the seasonal variations of the photosynthetic variables and needle traits of the current and one-year-old needles, and the growth parameters were observed under four light intensities. The results indicated that: (1) The seedling at 60% treatment exhibited the greatest growth, which agreed with the response of the light-saturated photosynthetic rates (Amax) and the dark respiration rate (Rd) in the current and one-year-old needles, i.e., Rd at 60% treatment was significantly lower than that at 100% treatment, but Amax did not differ between the seedlings at 100% and 60% treatments. (2) The P. koraiensis seedlings have a certain photosynthetic plasticity to adapt the light conditions by adjusting their needle traits and regulating the physiological processes, because Amax, Rd, light saturation point and compensation point, the needle mass area, needle nitrogen and chlorophyll contents were significantly (p〈0.05) correlated with the light intensities. Especially, Am,x at 100% and 60% treatments was significantly higher (p〈0.05) than that at 30% and 15% treatments for both current and one-year-old needles. (3) The needles of different ages played a commutative role during the growing season, i.e., the one-year-old needles played a major role for the photosynthesis in the early growing season; the current year needles did in the later growing season. This ensured the effective photosynthesis throughout the growing season. These findings suggest that P. koraiensis is the in-between heliophilous and shade-tolerant tree species at least for the seedlings up to 8 years.展开更多
Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the...Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.展开更多
文摘The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid development of information and communication technology[2].
文摘In the September 2022 issue of the Journal of Sport and Health Science,Ayala et al.1 published results from a cross-sectional study where they tested the hypothesis that light intensity physical activity(LIPA,1.6-2.9 metabolic equivalents(METs))moderates the relationship between sitting time and adiposity in 219 Australian adolescents aged 14±1.6 years(mean±SD).
基金Foundation of China(Grant No.U21A2032)National Natural Science Foundation of China(Grant No.42371203).
文摘To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.
基金supported by Longyuan Youth Innovation and Entrepreneurship Talent Individual Project of Gansu Province in 2023 (Zhu Rong)Innovative Development Special Project of China Meteorological Administration (CXFZ2023J040)Science and Technology Plan Project of Gansu Province (22JR4ZA103)
文摘Development of urban human settlement environments(HSEs)is an integral part of promoting high-quality and sustainable regional development and constructing a beautiful China.The city of Lanzhou,located at the geometric center of China,is the only provincial capital traversed by the Yellow River.Given the constraints posed by the valley topography and the need for economic development,the development of this HSE,which is located within an arid region,poses considerable challenges.Evidently,an understanding of the evolution of HSEs and drivers of changes in them contributes to high-quality,sustainable urban development in arid and semi-arid regions.An analytical model was developed using the parameters of relief degree of land surface,human comfort days,the land cover index,nighttime light index,and precipitation.This model was used in combination with population density and the gross domestic product to analyze the spatial distribution of Lanzhou's HSE and its drivers.The results showed that landscapes in Lanzhou underwent significant changes between 2000 and 2022,with an increase in building-up land(+0.946%),cultivated land(+0.134%),and forest land(+0.018%)and a decrease in grassland(-1.10%).There was significant outward expansion of the main urban zone of Lanzhou and of various county towns,with the increase in building-up land being most prominent.During this period,there were significant changes in the periphery of the core urban area and county towns in Lanzhou,with decreases moving from the urban center(the highest value)to the surrounding areas(Yongdeng County had the lowest value).The correlation between the HSE and population density grew stronger in Anning and Chengguan Districts but became weaker in Xigu and Qilihe Districts.Spatiotemporal variations in the HSE were primarily caused by climate change,followed by human activities,and were also influenced by the valley topography.Overall,the spatial distribution of population density and the HSE in Lanzhou demonstrated good consistency under the in-fluence of economic development and urbanization.
基金funded by the National Natural Science Foundation of China(No.42172149,No.U2244209)the SINOPEC Science and Technology Project(No.P22132,No.P21077-1).
文摘The Zhongjiang gas field is a typical large gas field in terrigenous strata of the Western Sichuan Depression.It remains debatable which member of the Upper Triassic Xujiahe Formation served as the source rocks and how significant the member contributed to the gas accumulations in the Zhongjiang gas field.In this study,we analyzed the essential characteristics of the Lower Jurassic source rocks and the geochemical features of light hydrocarbons in natural gas from the 2nd(T_(3)χ^(2))and 4th members(T_(3)χ^(4))of the Upper Triassic Xujiahe Formation(T_(3)χ),as well as the Middle Jurassic Shaximiao(J_(2)s)and Qianfoya(J_(2)q)formations.Based on this,we explored the sources of the natural gas in the Zhongjiang gas field and determined the natural gas migration patterns and their effects on the properties of light hydrocarbons in the natural gas.The results indicate that the Lower Jurassic lacustrine source rocks of the Zhongjiang gas field contain humic organic matter,with vitrinite reflectance(R_(0))values ranging from 0.86%to 0.98%.Samples meeting the criterion for effective source rocks[total organic carbon(TOC)content≥0.75%]exhibited an average TOC content of merely 1.02%,suggesting significantly lower hydrocarbon generation potential than source rocks in the underlying T3x,which show higher thermal maturity and TOC contents.For natural gas samples from T_(3)χ^(2),T_(3)χ^(4),J_(2)s,and J_(2)q reservoirs,their C_(5-7)iso-alkane content was significantly higher than their n-alkane content,and their methylcyclohexane(MCH)index ranged from 59.0%to 77.3%,indicating the predominance of methylcyclohexane in C_(7)light hydrocarbons.As indicated by the origin identification and gas-source correlation based on the geochemical features of light hydrocarbons,the natural gas in the Zhongjiang gas field is typical coal-derived gas.The gas from the primary pay zone of the Shaximiao Formation,with significantly high K_(1),(P_(2)+N_(2))/C_(7),and P_(3)/C_(7)values,predominantly originated from the 5th member of the T3x and migrated in the free phase,with a small amount possibly sourced from the Lower Jurassic source rocks.The dissolution and adsorption during gas migration led to a decrease in the aromatic content in C_(6-7)light hydrocarbons and an increase in the isoheptane values.Therefore,their effects must be considered when determining the gas origin and thermal maturity based on the aromatic content in C_(6-7) light hydrocarbons and iso-heptane values.
文摘Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providing access to electrical wiring for installation and maintenance. While essential for functionality, these handholes introduce a vulnerability to the overall structure, making them a potential failure point. Although prior research and analyses on aluminum light poles have been conducted, the behavior of smaller diameter poles containing handholes remains unexplored. Recognizing this need, a research team at the University of Akron undertook a comprehensive experimental program involving aluminum light poles with handholes containing welded inserts in order to gain a better understanding of their fatigue life, mechanical behavior, and failure mechanisms. The research involved testing seven large-scale aluminum light poles each 8-inch diameter, with two separate handholes. These handholes included a reinforcement that was welded to the poles. Finite Element Analysis (FEA), statistical analysis, and comparison analysis with their large counterparts (10-inch diameter) were used to augment the experimental results. The results revealed two distinct failure modes: progressive crack propagation leading to ultimate failure, and rupture of the pole near the weld initiation/termination site around the handhole. The comparison analysis indicated that the 8-inch diameter specimens exhibited an average fatigue life exceeding that of their 10-inch counterparts by an average of 30.7%. The experimental results were plotted alongside the fatigue detail classifications outlined in the Aluminum Design Manual (ADM), enhancing understanding of the fatigue detail category of the respective poles/handholes.
文摘With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Especially in modern large-scale buildings with high levels of industrialization,lighting systems should also be optimized accordingly.This article explores the application path of intelligent lighting in thermal power plants for reference.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61076013,51102003,and 60990313)the National Basic Research Program of China (Grant No. 2012CB619304)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100001120014)
文摘The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.
文摘The developments in the field of construction raise the need for concrete with less weight. This is beneficial for different applications starting from the less load applied to foundations and soil till the reduction of carnage capacity required for lifting precast units. In this paper, the production of light weight concrete from light local weight aggregate is investigated. Three candidate materials are used: crushed fired brick, vermiculite and light exfoliated clay aggregate (LECA). The first is available as the by-product of brick industry and the later two types are produced locally for different applications. Nine concrete mixes were made with same proportions and different aggregate materials. Physical and mechanical properties were measured for concrete in fresh and hardened states. Among these measured ones are unit weight, slump, compressive and tensile strength, and impact resistance. Also, the performance under elevated temperature was measured. Results show that reduction of unit weight up to 45%, of traditional concrete, can be achieved with 50% reduction in compressive strength. This makes it possible to get structural light weight concrete with compressive strength of 130 kg/cm2. Light weight concrete proved also to be more impact and fire resistant. However, as expected, it needs separate calibration curves for non-destructive evaluation. Following this experimental effort, the Artificial Neural Network (ANN) technique was applied for simulating and predicting the physical and mechanical properties of light weight aggregate concrete in fresh and hardened states. The current paper introduced the (ANN) technique to investigate the effect of light local weight aggregate on the performance of the produced light weight concrete. The results of this study showed that the ANN method with less effort was very efficiently capable of simulating the effect of different aggregate materials on the performance of light weight concrete.
文摘The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.
文摘The effect of weak light on the peroxidation of membrane_lipid of one_year_old cherries ( Prunus pseudocerasus L. 'Laiyang') was studied by whole_tree shading. The results showed that the net photosynthetic rate of cherry leaves under weak light was remarkably lower; the activity peroxidase (POD) increased when light intensity decreased; the activity of catalase (CAT) showed an opposite trend, and it was positively correlated with light intensity; the activity of superoxide dismutase (SOD) increased under 366 μmol·m -2 ·s -1 and 533.8 μmol·m -2 ·s -1 light intensity, but decreased under 228.8 μmol·m -2 ·s -1 and 83.9 μmol·m -2 ·s -1 light intensity. A remarkable increase of malondialdehyde (MDA), a product of membrane_lipid peroxidation, was also observed in cherry leaves when treated with weak light, indicating more serious peroxidation in the membrane.
文摘Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural characteristics of phloem tissues of source leaves were observed and compared in normal and weak light intensities using the transmission electron microscopy. Results showed that the average diameters of companion cells (CC) and sieve elements (SE) of all kinds of veins were bigger in normal than that in weak light intensity, indicating that light could influence the cell development and growth. Dense cytoplasm with abundant mitochondria, endoplasmic reticulums, multivesicular bodies, vesicles and plastids were observed in normal light intensity. On the contrary, CC with small vacuolar structures and few mitochondrias, endoplasmic reticulums were shown in weak light. Misalignment of grana thylakoid margins of nectarine leaves also was seen in weak light. The sieve pores of SEs were obstructed in weak light. Chloroplasts with numerous starch grains and few mitochondrias were noticed in the mesophyll cell (MES) surrounding the bundle sheath in weak light. The storage of starch grains appeared to result from an unbalance between photosynthate production and export of photosynthates. This observation provided a strong support to the point that most leaves export the most of assimilates in the light time. Plasmodesmal densities between SE/CC, CC/PP (phloem parenchyma cell), PP/PP and PP/BSC (bundle_sheath cell) decreased in weak light. Plasmodesmata were observed between CC/SE (NS) (nacreous_walled sieve element), PP/BSC in branch veins in normal light intensity, but not in weak light. Thus apoplasmic pathway may be the main mode of transport of assimilates in weak light, however symplasmic pathway may be the main mode of transport of assimilates in normal light intensity. These results demonstrated that the solar greenhouse nectarine trees could be adapted to the weak light via the ultrastructure variation of phloem tissues of the source leaves.
文摘This paper presents a method of measuring the particle mean size and dust concentration by small angle near forward light scattering optics and the extinction theory. Its theory is based on Fraunhofer diffraction theory which is the approximation of Mie scattering within the forward Fraunhofer diffraction lobe, and Rosin Rammler function is introduced to describe the particle size distribution in two phase flow in advance. Compared with the values by the sample weight method, the measurement results have a reasonable agreement. The present work has demonstrated that this method will be probably used to monitor the parameters of two phase flow.
文摘The commentary on A Clean, well-lighted Place intends to release general introduction about Hemingway's short story, especially his writing styles through a few short conversations between the young and middle-aged waiters to evince the value of life in simple words by Hemingway.
文摘This thesis is to analyze Hemingway's 'A Clean,Well-lighted Place'-a story to which the author applies his famous 'iceberg theory'.Hemingway relates his stories to an iceberg with only one-eighth actually showing and the other seven-eighths under water.This thesis is to show what is beneath the surface and the hidden meaning of the story.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
基金supported by Natural Science Foundation of Chongqing Three Gorges University (12ZD14)Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University
文摘A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.
基金supported by the National Science and Technology Support Program, China (2011BAZ01732-2)the Earmarked Fund for Modern Agro-Industry Technology Research System in China (CARS-25-A-07)
文摘Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant genotype) and 20078 (low light-sensitive genotype), were used to study the effects of low light (photosynthetic photon flux density, PPFD was 75- 100 umol m-2 s-1, control 450-500 umol m-2 s-1) on photosynthesis during leaf development. The result indicated that under low light chlorophyll content, net photosynthetic rate (PN), photosynthetic apparent quantum efficiency (Фi) and carboxylation efficiency (CE) of sweet pepper leaves increased gradually and decreased after reaching the maximum levels. The time to reach the peak values for all the above parameters was delayed, whereas the light compensation point (LCP) decreased gradually along with leaf expansion. The decrease in maximum quantum yield of PS II (Fv/Fm) was not observed at any stages of the leaf development under low light condition, but the actual PS II efficiency under irradiance (ФPS II) was lower accompanied by an increased non-photochemical quenching (NPQ) in young and/or old leaves compared with mature leaves. The antenna thermal dissipation (D) was a main way of heat dissipation when young leaves received excessive light energy, while the decline in photosynthetic function in senescence leaf was mostly owing to the decrease in carbon assimilation capacity, followed by a significantly increased allocation of excessive energy (Ex). Compared with 20078, ShY could maintain higher PN, ФPS II and lower QA reduction state for a longer time during leaf development. Thus, in ShY photosynthetic efficiency and the activity of electron transport of PS II were not significantly affected due to low light stress.
基金supported by a grant from the National Nature Science Foundation of China(30830085,31330016)
文摘As one of the three major five-leaved pines in the northern hemisphere, Pinus koraiensis is the most important dominant tree species in the natural mixed-broadleaved Korean pine forests. However, the regeneration of P koraiensis under the canopy of secondary forest stands is poor because of the light limitation. This study was conducted to understand how P koraiensis seedlings adapt to different light intensities and what would be the optimum light level for their establishment and growth. Three repetition plots with four light intensities (15%, 30%, 60% and 100% of the natural incident irradiances, achieved by suspending layers of black nylon net above and surrounding the plots) were set up under natural climate conditions in a montane region in eastern Liaoning Province, Northeast China. A total of 80 P koraiensis seedlings with similar height and root collar diameter were transplanted into four plots. After one year of acclimation to the specific light conditions, the seasonal variations of the photosynthetic variables and needle traits of the current and one-year-old needles, and the growth parameters were observed under four light intensities. The results indicated that: (1) The seedling at 60% treatment exhibited the greatest growth, which agreed with the response of the light-saturated photosynthetic rates (Amax) and the dark respiration rate (Rd) in the current and one-year-old needles, i.e., Rd at 60% treatment was significantly lower than that at 100% treatment, but Amax did not differ between the seedlings at 100% and 60% treatments. (2) The P. koraiensis seedlings have a certain photosynthetic plasticity to adapt the light conditions by adjusting their needle traits and regulating the physiological processes, because Amax, Rd, light saturation point and compensation point, the needle mass area, needle nitrogen and chlorophyll contents were significantly (p〈0.05) correlated with the light intensities. Especially, Am,x at 100% and 60% treatments was significantly higher (p〈0.05) than that at 30% and 15% treatments for both current and one-year-old needles. (3) The needles of different ages played a commutative role during the growing season, i.e., the one-year-old needles played a major role for the photosynthesis in the early growing season; the current year needles did in the later growing season. This ensured the effective photosynthesis throughout the growing season. These findings suggest that P. koraiensis is the in-between heliophilous and shade-tolerant tree species at least for the seedlings up to 8 years.
基金The National Natural Science Foundation of China under contract No.41721005the Fund of the Ministry of Natural Resources of the People’s Republic of China under contract Nos IRASCC 02-01-01 and 01-01-02C.
文摘Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.