期刊文献+
共找到158,179篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism by which Rab5 promotes regeneration and functional recovery of zebrafish Mauthner axons
1
作者 Jiantao Cui Yueru Shen +2 位作者 Zheng Song Dinggang Fan Bing Hu 《Neural Regeneration Research》 SCIE CAS 2025年第6期1816-1824,共9页
Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an... Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway. 展开更多
关键词 axonal regeneration Mauthner cell nerve regeneration Rab5 ZEBRAFISH
下载PDF
Human induced pluripotent stem cell-derived therapies for regeneration after central nervous system injury
2
作者 Stephen Vidman Yee Hang Ethan Ma +1 位作者 Nolan Fullenkamp Giles W.Plant 《Neural Regeneration Research》 SCIE CAS 2025年第11期3063-3075,共13页
In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the c... In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration. 展开更多
关键词 axon regeneration central nervous system regeneration induced pluripotent stem cells NEUROTRAUMA regenerative medicine spinal cord injury stem cell therapy
下载PDF
Advances in the Development of Gradient Scaffolds Made of Nano‑Micromaterials for Musculoskeletal Tissue Regeneration
3
作者 Lei Fang Xiaoqi Lin +5 位作者 Ruian Xu Lu Liu Yu Zhang Feng Tian Jiao Jiao Li Jiajia Xue 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期455-500,共46页
The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.T... The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes.Building on the anatomical characteristics of bone and interfacial tissues,this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues,specifically focusing on methods used to construct compositional and structural gradients within the scaffolds.The latest applications of gradient scaffolds for the regeneration of bone,osteochondral,and tendon-to-bone interfaces are presented.Furthermore,the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed,as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries. 展开更多
关键词 Gradient scaffolds Musculoskeletal tissues Advanced manufacturing BIOMATERIALS Tissue regeneration
下载PDF
Recent Strategies and Advances in Hydrogel‑Based Delivery Platforms for Bone Regeneration
4
作者 Xiao Wang Jia Zeng +4 位作者 Donglin Gan Kun Ling Mingfang He Jianshu Li Yongping Lu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期389-439,共51页
Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive mol... Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo.Hydrogels have emerged as ideal carriers to address these challenges,offering the potential to prolong retention times at lesion sites,extend half-lives in vivo and mitigate side effects,avoid burst release,and promote adsorption under physiological conditions.This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration,encompassing applications in cranial defect repair,femoral defect repair,periodontal bone regeneration,and bone regeneration with underlying diseases.Additionally,this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery,carrier-assisted delivery,and sequential delivery.Finally,this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration. 展开更多
关键词 HYDROGEL Bone regeneration Bioactive molecules Drug delivery Nano-/microscale carriers
下载PDF
A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair
5
作者 Simeon C.Daeschler Katelyn J.W.So +7 位作者 Konstantin Feinberg Marina Manoraj Jenny Cheung Jennifer Zhang Kaveh Mirmoeini JPaul Santerre Tessa Gordon Gregory HBorschel 《Neural Regeneration Research》 SCIE CAS 2025年第1期291-304,共14页
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a... Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery. 展开更多
关键词 BIODEGRADABLE local drug delivery nerve injury nerve regeneration nerve wrap TACROLIMUS
下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
6
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
7
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration NEURON peripheral nerve injury sensory neurons
下载PDF
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties
8
作者 Tong Li Quhan Cheng +11 位作者 Jingai Zhang Boxin Liu Yu Shi Haoxue Wang Lijie Huang Su Zhang Ruixin Zhang Song Wang Guangxu Lu Peifu Tang Zhongyang Liu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2084-2094,共11页
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit... Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries. 展开更多
关键词 aligned fibers anti-kinking helical fibers nerve guidance conduit nerve regeneration peripheral nerve injury topological guidance
下载PDF
A promising approach for quantifying focal stroke modeling and assessing stroke progression:optical resolution photoacoustic microscopy photothrombosis
9
作者 Xiao Liang Xingping Quan +6 位作者 Xiaorui Geng Yujing Huang Yonghua Zhao Lei Xi Zhen Yuan Ping Wang Bin Liu 《Neural Regeneration Research》 SCIE CAS 2025年第7期2029-2037,共9页
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me... To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes. 展开更多
关键词 AGE-DEPENDENT cerebral cortex ischemic stroke mouse model optical coherence tomography angiography photoacoustic microscopy PHOTOTHROMBOSIS vascular imaging
下载PDF
Macular microvascular and structural changes on optical coherence tomography angiography in atypical optic neuritis
10
作者 Chinmay Mahatme Madhurima Kaushik +2 位作者 Veerappan Rathinasabapathy Saravanan Karthik Kumar Virna M Shah 《World Journal of Methodology》 2025年第1期88-94,共7页
BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic im... BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases. 展开更多
关键词 optical coherence tomography angiography Atypical optic neuritis Macular microvascular changes Neuromyelitis optica spectrum disorders Myelin oligodendrocyte glycoprotein antibody disorder
下载PDF
High mobility group box 1 in the central nervous system:regeneration hidden beneath inflammation
11
作者 Hanki Kim Bum Jun Kim +4 位作者 Seungyon Koh Hyo Jin Cho Xuelian Jin Byung Gon Kim Jun Young Choi 《Neural Regeneration Research》 SCIE CAS 2025年第1期107-115,共9页
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex... High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1. 展开更多
关键词 central nervous system damage-associated molecular pattern ethyl pyruvate glycyrhizzin high mobility group box 1 INFLAMMATION neural stem cells NEURODEVELOPMENT oligodendrocyte progenitor cells redox status regeneration
下载PDF
Valley-selective manipulation of moiréexcitons through optical Stark effect
12
作者 Chenran Xu Jichen Zhou +5 位作者 Zhexu Shan Wenjian Su Kenji Watanabe Takashi Taniguchi Dawei Wang Yanhao Tang 《Chinese Physics B》 2025年第1期14-18,共5页
Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafas... Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafast and coherent method of manipulating matter states,which,however,has not been demonstrated in moirématerials.Here,we report the valleyselective optical Stark effect of moiréexcitons in the WSe_(2)/WS_(2)superlattice by using transient reflection spectroscopy.Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiréexcitons,corresponding to pseudomagnetic fields as large as 34 T.Our results provide a route to coherently manipulate exotic states in moirésuperlattices. 展开更多
关键词 optical Stark effect moir´e exciton transient reflection spectroscopy
下载PDF
Retinal capillary density among healthy Egyptian and South Asian students:an optical coherence tomography angiography study
13
作者 Abdussalam M Abdullatif Alimulhaq Mohammad Moamnlhaq +1 位作者 Tamer A.Macky Noha Ahmed Edris 《International Journal of Ophthalmology(English edition)》 2025年第1期111-116,共6页
AIM:To compare the macular and optic nerve perfusion and vascular architecture using optical coherence tomography angiography(OCTA)in normal eyes of Egyptian(Caucasians)and South Asian(Asians)volunteers.METHODS:Cross-... AIM:To compare the macular and optic nerve perfusion and vascular architecture using optical coherence tomography angiography(OCTA)in normal eyes of Egyptian(Caucasians)and South Asian(Asians)volunteers.METHODS:Cross-sectional analytical OCTA study performed on 90 eyes of South Asian(n=45)and Egyptians(n=45)were analyzed.All participants underwent bestcorrected visual acuity test,slit lamp,and fundus examination.OCTA images;macular 6×6 mm^(2) grid and optic nerve 4.5×4.5 mm^(2) grid were used to examine the parafoveal and peripapillary regions,respectively.RESULTS:The mean capillary vessel density(CVD)in macular sectors among South Asians and Egyptians participants were(50.31%±2.53%,51.2%±5.93%)and(49.71%±3.6%,51.94%±4.79%)in superficial(SCP)and deep capillary plexuses(DCP),respectively(P>0.05).Mean CVD in both groups was higher in DCP compared to SCP in all sectors but was not significant(P>0.05).Mean foveal CVD increases with an increase in central retinal thickness in both SCP and DCP(P<0.001),among both groups.Mean area of the foveal avascular zone(FAZ)was 0.28±0.09 and 0.27±0.08 mm2 in South Asian and Egyptians,respectively.FAZ area decreases with an increase in the thickness and foveal CVD(P<0.001).Mean CVD in the peripapillary area was 48.23%±5.78% in South Asian and 49.52%±2.38% in Egyptian volunteers.The mean retinal nerve fiber layer thickness was found to be higher in the nasal quadrant among South Asian females than the Egyptian females(P<0.05).CONCLUSION:No significant racial disparity is found in this study.The findings are helpful for assessing and improving the normative data on the differences in South Asian and Egyptian populations. 展开更多
关键词 South Asian EGYPTIAN optical coherence tomography angiography macular perfusion peripapillary vessel flow density
下载PDF
Comparison of the effect of ranibizumab in retinal vein occlusion and macular edema with different optical coherence tomographic patterns
14
作者 Yue Xu Yue-Cong Yin +3 位作者 Ze-Yu Song Xiao-Yu Zhou Jia-Ju Zhang Juan Liang 《International Journal of Ophthalmology(English edition)》 2025年第2期275-282,共8页
AIM:To explore the morphological and functional parameters to evaluate the effectiveness of intravitreal injections of ranibizumab(IVR)in treating macular edema(ME)secondary to retinal vein occlusion(RVO).METHODS:This... AIM:To explore the morphological and functional parameters to evaluate the effectiveness of intravitreal injections of ranibizumab(IVR)in treating macular edema(ME)secondary to retinal vein occlusion(RVO).METHODS:This retrospective study involved 65 RVO patients(65 eyes)who received IVR and were followedup for more than 3mo.ME was categorized into cystoid macular edema(CME),diffuse retinal thickening(DRT),and serous retinal detachment(SRD)according to optical coherence tomography(OCT)images.The comparison of best corrected visual acuity(BCVA;logMAR)and central macular thickness(CMT)among different follow-up points and those among 3 groups were performed by Kruskal-Wallis test.The correlation between BCVA and baseline parameters during treatment was analyzed using Spearman correlation analysis.RESULTS:BCVA tended to improve in all groups,with marked improvement in CME and DRT groups.CMT showed the greatest reduction after 1wk,and remained stable over the following 3mo.DRT patients had the worst BCVA and the highest CMT at baseline,but the differences became smaller after IVR treatment.CMT in SRD group was significantly better than in CME and DRT groups 3mo after IVR.Most patients of CME and SRD groups transitioned to a normal pattern at 3mo follow-up.DRT patients were most likely to transform into the other morphological groups,while SRD patients showed minimal transitions.BCVA at baseline was identified as the most important prognostic indicator in all 3 groups.Additionally,DRT patients with a longer clinical course,higher CMT and central retinal vein occlusion(CRVO)tend to exhibit worse BCVA after treatment.In addition,CRVO patients are more likely to have worse BCVA at 2 and 3mo follow-up compared with branch retinal vein occlusion(BRVO)patients in CME group.SRD patients with higher baseline CMT were prone to experiencing worse BCVA after treatment.CONCLUSION:The effectiveness of IVR is strongly correlated with baseline BCVA in all 3 groups.Baseline parameters including clinical course,CMT,and RVO position are also useful in predicting the BCVA at different time points after treatment. 展开更多
关键词 retinal vein occlusion optical coherence tomography serous retinal detachment cystoid macular edema diffuse retinal thickening
下载PDF
Device Design and Characteristics for SOA-basedAll Optical Signal 2R Regeneration 被引量:2
15
作者 LUNXiu-jun HUANGYong-qing RENXiao-min 《Semiconductor Photonics and Technology》 CAS 2003年第2期65-70,共6页
A new scheme based on SOA-MZI for all-optical 2R regeneration is proposed. The characteristics of gain and switching window of this device are investigated in detail. Numerical simulation results indicate that the non... A new scheme based on SOA-MZI for all-optical 2R regeneration is proposed. The characteristics of gain and switching window of this device are investigated in detail. Numerical simulation results indicate that the nonlinear gain compression, the time delay between the input optical signal and the width of the optical pulse are essential parameters for a good performance of all-optical 2R regeneration. 展开更多
关键词 all―optical 2R regeneration semiconductor optical amplifier (SOA) opticaldecision gate mach―zehnder interferometer (MZI)
下载PDF
Optical tissue clearing enables rapid,precise and comprehensive assessment of three-dimensional morphology in experimental nerve regeneration research 被引量:3
16
作者 Simeon C.Daeschler Jennifer Zhang +1 位作者 Tessa Gordon Gregory H.Borschel 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第6期1348-1356,共9页
Morphological analyses are key outcome assessments for nerve regeneration studies but are historically limited to tissue sections.Novel optical tissue clearing techniques enabling three-dimensional imaging of entire o... Morphological analyses are key outcome assessments for nerve regeneration studies but are historically limited to tissue sections.Novel optical tissue clearing techniques enabling three-dimensional imaging of entire organs at a subcellular resolution have revolutionized morphological studies of the brain.To extend their applicability to experimental nerve repair studies we adapted these techniques to nerves and their motor and sensory targets in rats.The solvent-based protocols rendered harvested peripheral nerves and their target organs transparent within 24 hours while preserving tissue architecture and fluorescence.The optical clearing was compatible with conventional laboratory techniques,including retrograde labeling studies,and computational image segmentation,providing fast and precise cell quantitation.Further,optically cleared organs enabled three-dimensional morphometry at an unprecedented scale including dermatome-wide innervation studies,tracing of intramuscular nerve branches or mapping of neurovascular networks.Given their wide-ranging applicability,rapid processing times,and low costs,tissue clearing techniques are likely to be a key technology for next-generation nerve repair studies.All procedures were approved by the Hospital for Sick Children’s Laboratory Animal Services Committee(49871/9)on November 9,2019. 展开更多
关键词 HISTOLOGY image segmentation MORPHOMETRY nerve regeneration outcome assessment peripheral nerve three-dimensional imaging tissue clearing
下载PDF
Nanozyme‑Engineered Hydrogels for Anti‑Inflammation and Skin Regeneration 被引量:3
17
作者 Amal George Kurian Rajendra K.Singh +2 位作者 Varsha Sagar Jung‑Hwan Lee Hae‑Won Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期127-179,共53页
Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-... Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies. 展开更多
关键词 Nanozymes HYDROGELS ROS scavenging ANTI-INFLAMMATION Skin regeneration
下载PDF
Regeneration of the heart:f rom molecular mechanisms to clinical therapeutics 被引量:2
18
作者 Qian-Yun Guo Jia-Qi Yang +1 位作者 Xun-Xun Feng Yu-Jie Zhou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期80-97,共18页
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea... Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury. 展开更多
关键词 Heart regeneration Cardiac disease THERAPEUTICS Signaling mechanisms
下载PDF
Efficient stochastic parallel gradient descent training for on-chip optical processor 被引量:1
19
作者 Yuanjian Wan Xudong Liu +4 位作者 Guangze Wu Min Yang Guofeng Yan Yu Zhang Jian Wang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第4期5-15,共11页
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical... In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips. 展开更多
关键词 optical communications optical signal processing channel descrambling optical neural network chip silicon photonics
下载PDF
Preoperative albumin-bilirubin score and liver resection percentage determine postoperative liver regeneration after partial hepatectomy 被引量:1
20
作者 Kazuhiro Takahashi Masahiko Gosho +11 位作者 Yoshihiro Miyazaki Hiromitsu Nakahashi Osamu Shimomura Kinji Furuya Manami Doi Yohei Owada Koichi Ogawa Yusuke Ohara Yoshimasa Akashi Tsuyoshi Enomoto Shinji Hashimoto Tatsuya Oda 《World Journal of Gastroenterology》 SCIE CAS 2024年第14期2006-2017,共12页
BACKGROUND The success of liver resection relies on the ability of the remnant liver to regenerate.Most of the knowledge regarding the pathophysiological basis of liver regeneration comes from rodent studies,and data ... BACKGROUND The success of liver resection relies on the ability of the remnant liver to regenerate.Most of the knowledge regarding the pathophysiological basis of liver regeneration comes from rodent studies,and data on humans are scarce.Additionally,there is limited knowledge about the preoperative factors that influence postoperative regeneration.AIM To quantify postoperative remnant liver volume by the latest volumetric software and investigate perioperative factors that affect posthepatectomy liver regenera-tion.METHODS A total of 268 patients who received partial hepatectomy were enrolled.Patients were grouped into right hepatectomy/trisegmentectomy(RH/Tri),left hepa-tectomy(LH),segmentectomy(Seg),and subsegmentectomy/nonanatomical hepatectomy(Sub/Non)groups.The regeneration index(RI)and late rege-neration rate were defined as(postoperative liver volume)/[total functional liver volume(TFLV)]×100 and(RI at 6-months-RI at 3-months)/RI at 6-months,respectively.The lower 25th percentile of RI and the higher 25th percentile of late regeneration rate in each group were defined as“low regeneration”and“delayed regeneration”.“Restoration to the original size”was defined as regeneration of the liver volume by more than 90%of the TFLV at 12 months postsurgery.RESULTS The numbers of patients in the RH/Tri,LH,Seg,and Sub/Non groups were 41,53,99 and 75,respectively.The RI plateaued at 3 months in the LH,Seg,and Sub/Non groups,whereas the RI increased until 12 months in the RH/Tri group.According to our multivariate analysis,the preoperative albumin-bilirubin(ALBI)score was an independent factor for low regeneration at 3 months[odds ratio(OR)95%CI=2.80(1.17-6.69),P=0.02;per 1.0 up]and 12 months[OR=2.27(1.01-5.09),P=0.04;per 1.0 up].Multivariate analysis revealed that only liver resection percentage[OR=1.03(1.00-1.05),P=0.04]was associated with delayed regeneration.Furthermore,multivariate analysis demonstrated that the preoperative ALBI score[OR=2.63(1.00-1.05),P=0.02;per 1.0 up]and liver resection percentage[OR=1.02(1.00-1.05),P=0.04;per 1.0 up]were found to be independent risk factors associated with volume restoration failure.CONCLUSION Liver regeneration posthepatectomy was determined by the resection percentage and preoperative ALBI score.This knowledge helps surgeons decide the timing and type of rehepatectomy for recurrent cases. 展开更多
关键词 Liver regeneration Albumin-bilirubin score Liver resection percentage Partial hepatectomy Human regeneration index
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部