The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve ...The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve reliability must be performed before a subsea all-electric XT is launched;such measures are crucial to subsea safe production.A fault-tolerant control system was developed in this paper to improve the reliability of XT.A dual-factor degradation model for electrical control system components was proposed to improve the evaluation accuracy,and the reliability of the control system was analyzed based on the Markov model.The influences of the common cause failure and the failure rate in key components on the reliability and availability of the control system were studied.The impacts of mean time to repair and incomplete repair strategy on the availability of the control system were also investigated.Research results show the key factors that affect system reliability,and a specific method to improve the reliability and availability of the control system was given.This reliability analysis method for the control system could be applied to general all-electric subsea control systems to guide their safe production.展开更多
The development of subsea all-electric Christmas trees is an area of focus in the offshore oil industry worldwide.The main difficulties are associated with the development and control strategies for subsea all-electri...The development of subsea all-electric Christmas trees is an area of focus in the offshore oil industry worldwide.The main difficulties are associated with the development and control strategies for subsea all-electric actuators,which are the most criti-cal components of subsea Christmas trees.A single-motor-level fuzzy PID control with an integrated working condition detection mod-ule and a three-motor redundant-level deviation strategy with coupled joint synchronous control were proposed in this paper to real-ize the real time determination of algorithm parameters according to the working conditions,solve the rapid redistribution problems,and maintain the fast speed of the servo motor of the subsea all-electric tree valve actuator.A synchronous control electrical system was built,tested,and verified through simulation analysis.Test results show that the two redundant servo motors can still control the all-electric valve actuator and provide good synchronization control capabilities despite the failure of one servo motor,and the verti-cal and horizontal vibration values of the system are within reasonable ranges.The synchronous control strategy can be applied to the synchronous control problem of subsea all-electric production systems,which is of considerable importance for the development of subsea all-electric production systems.展开更多
The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way...The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively.展开更多
Both the traverse subsystem and the elevation subsystem of the all-electrical tank gun control system are composed of electrical drive control system respectively. The parameters of PI regulator in these electrical dr...Both the traverse subsystem and the elevation subsystem of the all-electrical tank gun control system are composed of electrical drive control system respectively. The parameters of PI regulator in these electrical drive control systems affect the performance of the control system seriously. Up to now, there is not a simple and practical method for choosing regulator parameters, which are usually determined by repeated and continual readjustment. This method is low efficient, and the parameters got are not always optimal. A method for on-line adjusting the parameters of PI regulator in the electrical drive control system by computer program is introduced in this paper. The function of adjusting PI parameters of the electrical drive control system is realized by PC program written by VC++ and controlling program written by assemble language and by the communication between PC and DSP completed by the control MSCOMM in VC++6.0. The method as mentioned above which is applied for an all-electrical tank gun control system under development is proved very available, a better performance might be obtained for the all-electrical tank gun control system easily.展开更多
As a core part of subsea production systems,subsea control modules(SCMs)are costly,difficult,and expensive to install and inconvenient to use in underwater maintenance.Therefore,performance and function tests must be ...As a core part of subsea production systems,subsea control modules(SCMs)are costly,difficult,and expensive to install and inconvenient to use in underwater maintenance.Therefore,performance and function tests must be carried out before launching SCMs.This study developed a testing device and an SCM test by investigating SCMs and their underwater.The testing device includes four parts:a hydraulic station,an SCM test stand,a signal generating device,and an electronic test unit.First,the basic indices of the testing device were determined from the performance and working parameters of the SCM.Second,the design scheme of the testing device for the SCM was tentatively proposed,and each testing device was designed.Finally,a practical measurement of the SCM,in combination with the hydraulic station,SCM test stand,signal generator,electronic unit,and highpressure water tank,was carried out according to the test requirements.The measurement mainly involved equipment inspection before testing and an experimental test for the SCM.The validity and feasibility of the testing device and method were simultaneously verified through an association test.展开更多
The extreme operational environmental conditions and aging conditions of subsea structures pose a risk to their structural integrity and is critical to their safety.Nondestructive testing is essential to identify defe...The extreme operational environmental conditions and aging conditions of subsea structures pose a risk to their structural integrity and is critical to their safety.Nondestructive testing is essential to identify defects developing within the structure,allowing repair in a timely manner to mitigate against failures that cause damage to the environment and pose a hazard to human operators.However,to be cost effective,inspections must be carried out without taking the risers out of service.This poses significant safety risks if undertaken manually.This paper presents the development of an automated inspection system for flexible risers that are used to connect wellheads on the seafloor to the offshore production and storage facility.Due to the complex structure of risers,radiography is considered as the best technique to inspect multiple layers of the risers.However,radiography inspection,in turn,requires a robotic system for in-situ inspection with higher payload capacity,precise movement of source and detector which is able to withstand an extreme operational environment.The deployment of a radiography inspection system hasbeen achieved bydeveloping acustomized subsearobotic system called RiserSure that can provide precise scanning motion of a gamma ray source and digital detector moving in alignment.The prototype has been tested on a flexible riser during shallow water sea trials with the system placed around a riser by a remotely operated vehicle.The results from the trials show that the internal inner and outer tensile armor layer and defects in the riser can be successfully imaged in real operational conditions.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61703224。
文摘The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve reliability must be performed before a subsea all-electric XT is launched;such measures are crucial to subsea safe production.A fault-tolerant control system was developed in this paper to improve the reliability of XT.A dual-factor degradation model for electrical control system components was proposed to improve the evaluation accuracy,and the reliability of the control system was analyzed based on the Markov model.The influences of the common cause failure and the failure rate in key components on the reliability and availability of the control system were studied.The impacts of mean time to repair and incomplete repair strategy on the availability of the control system were also investigated.Research results show the key factors that affect system reliability,and a specific method to improve the reliability and availability of the control system was given.This reliability analysis method for the control system could be applied to general all-electric subsea control systems to guide their safe production.
基金support of the Shandong Provincial Natural Science Foundation(No.ZR2021QE059)the National Natural Science Foundation of China(No.51974169)the Key R&D Program of Shandong Province(No.2019GGX101020).
文摘The development of subsea all-electric Christmas trees is an area of focus in the offshore oil industry worldwide.The main difficulties are associated with the development and control strategies for subsea all-electric actuators,which are the most criti-cal components of subsea Christmas trees.A single-motor-level fuzzy PID control with an integrated working condition detection mod-ule and a three-motor redundant-level deviation strategy with coupled joint synchronous control were proposed in this paper to real-ize the real time determination of algorithm parameters according to the working conditions,solve the rapid redistribution problems,and maintain the fast speed of the servo motor of the subsea all-electric tree valve actuator.A synchronous control electrical system was built,tested,and verified through simulation analysis.Test results show that the two redundant servo motors can still control the all-electric valve actuator and provide good synchronization control capabilities despite the failure of one servo motor,and the verti-cal and horizontal vibration values of the system are within reasonable ranges.The synchronous control strategy can be applied to the synchronous control problem of subsea all-electric production systems,which is of considerable importance for the development of subsea all-electric production systems.
基金supported by the National Key Research and Development Program of China (No.2022YFC2806102)the National Natural Science Foundation of China (No.52171287,52325107)+3 种基金High-tech Ship Research Project of Ministry of Industry and Information Technology (No.2023GXB01-05-004-03,No.GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province (No.ZR2022JQ25)the Taishan Scholars Project (No.tsqn201909063)the Fundamental Research Funds for the Central Universities (No.24CX10006A)。
文摘The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively.
文摘Both the traverse subsystem and the elevation subsystem of the all-electrical tank gun control system are composed of electrical drive control system respectively. The parameters of PI regulator in these electrical drive control systems affect the performance of the control system seriously. Up to now, there is not a simple and practical method for choosing regulator parameters, which are usually determined by repeated and continual readjustment. This method is low efficient, and the parameters got are not always optimal. A method for on-line adjusting the parameters of PI regulator in the electrical drive control system by computer program is introduced in this paper. The function of adjusting PI parameters of the electrical drive control system is realized by PC program written by VC++ and controlling program written by assemble language and by the communication between PC and DSP completed by the control MSCOMM in VC++6.0. The method as mentioned above which is applied for an all-electrical tank gun control system under development is proved very available, a better performance might be obtained for the all-electrical tank gun control system easily.
基金supported by the National Key R&D Program of China(2018YFC0310500)High-Tech Ship Research Projects sponsored by the Ministry of Industry and Information Technology(2018GXB01)Yantai City school land integration development project(2019XDRHXMPT29)research and development and test platform of underwater production system。
文摘As a core part of subsea production systems,subsea control modules(SCMs)are costly,difficult,and expensive to install and inconvenient to use in underwater maintenance.Therefore,performance and function tests must be carried out before launching SCMs.This study developed a testing device and an SCM test by investigating SCMs and their underwater.The testing device includes four parts:a hydraulic station,an SCM test stand,a signal generating device,and an electronic test unit.First,the basic indices of the testing device were determined from the performance and working parameters of the SCM.Second,the design scheme of the testing device for the SCM was tentatively proposed,and each testing device was designed.Finally,a practical measurement of the SCM,in combination with the hydraulic station,SCM test stand,signal generator,electronic unit,and highpressure water tank,was carried out according to the test requirements.The measurement mainly involved equipment inspection before testing and an experimental test for the SCM.The validity and feasibility of the testing device and method were simultaneously verified through an association test.
基金The authors acknowledge the support and funding provided by the European Union’s Horizon 2020 FTIPilot-2016-1 Fast Track to Innovation program under grant agreement No 730753 for the RiserSure project(Website:www.risersure.eu).
文摘The extreme operational environmental conditions and aging conditions of subsea structures pose a risk to their structural integrity and is critical to their safety.Nondestructive testing is essential to identify defects developing within the structure,allowing repair in a timely manner to mitigate against failures that cause damage to the environment and pose a hazard to human operators.However,to be cost effective,inspections must be carried out without taking the risers out of service.This poses significant safety risks if undertaken manually.This paper presents the development of an automated inspection system for flexible risers that are used to connect wellheads on the seafloor to the offshore production and storage facility.Due to the complex structure of risers,radiography is considered as the best technique to inspect multiple layers of the risers.However,radiography inspection,in turn,requires a robotic system for in-situ inspection with higher payload capacity,precise movement of source and detector which is able to withstand an extreme operational environment.The deployment of a radiography inspection system hasbeen achieved bydeveloping acustomized subsearobotic system called RiserSure that can provide precise scanning motion of a gamma ray source and digital detector moving in alignment.The prototype has been tested on a flexible riser during shallow water sea trials with the system placed around a riser by a remotely operated vehicle.The results from the trials show that the internal inner and outer tensile armor layer and defects in the riser can be successfully imaged in real operational conditions.